Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 221-231.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0112
Previous Articles Next Articles
LI Yi-jun1,2(), YANG Xiao-bei2, XIA Lin2, LUO Zhao-peng2, XU Xin2, YANG Jun2, NING Qian-ji1, WU Ming-zhu2()
Received:
2024-01-31
Online:
2024-08-26
Published:
2024-07-02
Contact:
WU Ming-zhu
E-mail:liyijun124@163.com;mingzhuwus@126.com
LI Yi-jun, YANG Xiao-bei, XIA Lin, LUO Zhao-peng, XU Xin, YANG Jun, NING Qian-ji, WU Ming-zhu. Cloning and Functional Analysis of NtPRR37 Gene in Nicotiana tabacum L.[J]. Biotechnology Bulletin, 2024, 40(8): 221-231.
引物名称Primer name | 碱基序列Base sequence(5'-3') | 用途Usage |
---|---|---|
NtPRR37-F | GAGGAAGATGAGTCAAGGAT | 基因克隆 Cloning of gene |
NtPRR37-R | TCTGTTCTGCGAGTCTCT | |
qNtPRR37-F | ACCATCATCACTACCATCAC | NtPRR37基因的RT-qPCR 检测 RT-qPCR detection of NtPRR37 gene |
qNtPRR37-R | TGCTTCCATTGTTACTTCCT | |
L25-F | CCCCTCACCACAGAGTCTGC | 内参基因的RT-qPCR检测 RT-qPCR detection of internal reference gene |
L25-R | AAGGGTGTTGTTGTCCTCAATCTT | |
NtPRR37-VIGS-F | CACTTGTGCCCAGGTTGTC | VIGS载体的构建 Construction of VIGS vector |
NtPRR37-VIGS-R | TCTAGGAGCGGCTACATCGT | |
NtFT4-F | GTCACAGACATCCCAGCAACT | NtFT4基因的RT-qPCR检测 RT-qPCR detection of NtFT4 gene |
NtFT4-R | CGAAACACTACGAAAACAAAGC | |
NtAP1-F | CCTTACACCTTTTCTCAGACCAA | NtAP1基因的RT-qPCR检测 RT-qPCR detection of NtAP1gene |
NtAP1-R | ATGTGCTTTCTTCGCTAAACCTC | |
NtCO-F | CAAATATGGCTCCTCAGGGA | NtCO基因的RT-qPCR检测 RT-qPCR detection of NtCO gene |
NtCO-R | GGATGAAATGTATGCGTTATGG | |
NtSOC1-F | AAACAGTTGGAGCGGAGTG | NtSOC1基因的RT-qPCR检测 RT-qPCR detection of NtSOC1 gene |
NtSOC1-R | GCATTTTCAGAAGCAAGGAT |
Table 1 Primers and their names involved in this experiment
引物名称Primer name | 碱基序列Base sequence(5'-3') | 用途Usage |
---|---|---|
NtPRR37-F | GAGGAAGATGAGTCAAGGAT | 基因克隆 Cloning of gene |
NtPRR37-R | TCTGTTCTGCGAGTCTCT | |
qNtPRR37-F | ACCATCATCACTACCATCAC | NtPRR37基因的RT-qPCR 检测 RT-qPCR detection of NtPRR37 gene |
qNtPRR37-R | TGCTTCCATTGTTACTTCCT | |
L25-F | CCCCTCACCACAGAGTCTGC | 内参基因的RT-qPCR检测 RT-qPCR detection of internal reference gene |
L25-R | AAGGGTGTTGTTGTCCTCAATCTT | |
NtPRR37-VIGS-F | CACTTGTGCCCAGGTTGTC | VIGS载体的构建 Construction of VIGS vector |
NtPRR37-VIGS-R | TCTAGGAGCGGCTACATCGT | |
NtFT4-F | GTCACAGACATCCCAGCAACT | NtFT4基因的RT-qPCR检测 RT-qPCR detection of NtFT4 gene |
NtFT4-R | CGAAACACTACGAAAACAAAGC | |
NtAP1-F | CCTTACACCTTTTCTCAGACCAA | NtAP1基因的RT-qPCR检测 RT-qPCR detection of NtAP1gene |
NtAP1-R | ATGTGCTTTCTTCGCTAAACCTC | |
NtCO-F | CAAATATGGCTCCTCAGGGA | NtCO基因的RT-qPCR检测 RT-qPCR detection of NtCO gene |
NtCO-R | GGATGAAATGTATGCGTTATGG | |
NtSOC1-F | AAACAGTTGGAGCGGAGTG | NtSOC1基因的RT-qPCR检测 RT-qPCR detection of NtSOC1 gene |
NtSOC1-R | GCATTTTCAGAAGCAAGGAT |
名称 Name | 网址 Website | 用途 Usage |
---|---|---|
Expasy | | 基因序列翻译成氨基酸序列Gene sequence translated into amino acid sequence |
ProtParam | | 分析氨基酸含量、分子量和等电点Analysis of amino acid content, molecular weight and isoelectric point |
Protscale | | 分析蛋白的亲水性及疏水性Analysis of hydrophilicity and hydrophobicity of proteins |
SMART | | 分析保守结构域Analysis of conserved domains |
SOPMA | | 预测二级结构Prediction of secondary structure |
SWISS-MODEL | | 预测三级结构Prediction of tertiary structure |
SignalP-5.0 | | 分析信号肽Analysis of signal peptide |
Table 2 Bioinformatics online tools
名称 Name | 网址 Website | 用途 Usage |
---|---|---|
Expasy | | 基因序列翻译成氨基酸序列Gene sequence translated into amino acid sequence |
ProtParam | | 分析氨基酸含量、分子量和等电点Analysis of amino acid content, molecular weight and isoelectric point |
Protscale | | 分析蛋白的亲水性及疏水性Analysis of hydrophilicity and hydrophobicity of proteins |
SMART | | 分析保守结构域Analysis of conserved domains |
SOPMA | | 预测二级结构Prediction of secondary structure |
SWISS-MODEL | | 预测三级结构Prediction of tertiary structure |
SignalP-5.0 | | 分析信号肽Analysis of signal peptide |
Fig. 2 Multiple sequence alignment of PRR37 between tobacco and other species The red box in the diagram contains the domains(REC and CCT domains)of PRR37 protein
Fig. 5 Effects of light on the expression of NtPRR37 gene A: The effect of different photoperiods on the expression of NtPRR37 gene. B: The effect of different darkness durations on the expression of NtPRR37 gene(Darkness treatment: 0 h/24 h, light treatment:16 h/8 h). C : Analysis of the expression of NtPRR37 gene under continuous long light and short light(Short light treatment: 8 h/16 h, long light treatment: 16 h/8 h)
Fig. 6 Phenotype of Nicotiana benthamiana after Agrobacterium infection A: Phenotypic comparison of blank control(Con)and positive control(pTRV2-PDS)plants after 7 d of infection. B: Phenotypic comparison of negative control(pTRV2), blank control(Con)and experimental group(pTRV2-NtPRR37)plants after 16 d of infection. C: Comparison of flowering time of negative control(pTRV2), blank control(Con)and experimental group(pTRV2-NtPRR37)plants
Fig. 7 Expression analysis of genes related to flowering after NtPRR37 gene silenced Expression analysis of related genes after 15 d of infection in negative control (pTRV2), blank control (Con) and experimental group (pTRV2-NtPRR37) plants
[1] | 杨甲甲, 杨米连, 胡彦如. 生物钟PRR蛋白促进拟南芥幼苗中花青素的合成[J]. 广西植物, 2023, 43(4): 676-687. |
Yang JJ, Yang ML, Hu YR. Circadian clock PRR proteins stimulate anthocyanin synthesis in Arabidopsis thaliana seedlings[J]. Guihaia, 2023, 43(4): 676-687. | |
[2] | Hargreaves JK, Oakenfull RJ, Davis AM, et al. Multiple metals influence distinct properties of the Arabidopsis circadian clock[J]. PLoS One, 2022, 17(4): e0258374. |
[3] | 莫伟亮. 拟南芥蓝光受体CRY2介导相分离调控生物钟机制的研究[D]. 长春: 吉林大学, 2022. |
Mo WL. Study on the mechanism of Arabidopsis blue light receptor CRY2-mediated phase separation to regulate the circadian clock[D]. Changchun: Jilin University, 2022. | |
[4] | Mizuno T, Nakamichi N. Pseudo-response regulators(PRRs)or true oscillator components(TOCs)[J]. Plant Cell Physiol, 2005, 46(5): 677-685. |
[5] | Koo BH, Yoo SC, Park JW, et al. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes[J]. Mol Plant, 2013, 6(6): 1877-1888. |
[6] | Salomé PA, McClung CR. PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock[J]. Plant Cell, 2005, 17(3): 791-803. |
[7] |
Zhang L, Li QP, Dong HJ, et al. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice[J]. Sci Rep, 2015, 5: 7663.
doi: 10.1038/srep07663 pmid: 25563494 |
[8] | Cockram J, Thiel T, Steuernagel B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae[J]. PLoS One, 2012, 7(9): e45307. |
[9] | Nimmo HG, Laird J. Arabidopsis thaliana PRR7 provides circadian input to the CCA1 promoter in shoots but not roots[J]. Front Plant Sci, 2021, 12: 750367. |
[10] | Yuan L, Hu Y, Li SL, et al. PRR9 and PRR7 negatively regulate the expression of EC components under warm temperature in roots[J]. Plant Signal Behav, 2021, 16(2): 1855384. |
[11] |
He YQ, Yu YJ, Wang XL, et al. Aschoff's rule on circadian rhythms orchestrated by blue light sensor CRY2 and clock component PRR9[J]. Nat Commun, 2022, 13(1): 5869.
doi: 10.1038/s41467-022-33568-3 pmid: 36198686 |
[12] |
Wang L, Kim J, Somers DE. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription[J]. Proc Natl Acad Sci USA, 2013, 110(2): 761-766.
doi: 10.1073/pnas.1215010110 pmid: 23267111 |
[13] |
Zhang B, Liu HY, Qi FX, et al. Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice[J]. Rice, 2019, 12(1): 48.
doi: 10.1186/s12284-019-0314-x pmid: 31309345 |
[14] | Klein RR, Miller FR, Dugas DV, et al. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum[J]. Theor Appl Genet, 2015, 128(9): 1669-1683. |
[15] | Murphy RL, Klein RR, Morishige DT, et al. Coincident light and clock regulation of pseudoresponse regulator protein 37(PRR37)controls photoperiodic flowering in sorghum[J]. Proc Natl Acad Sci USA, 2011, 108(39): 16469-16474. |
[16] | Kamioka M, Takao SR, Suzuki T, et al. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock[J]. Plant Cell, 2016, 28(3): 696-711. |
[17] |
Mizoguchi T, Wright L, Fujiwara S, et al. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis[J]. Plant Cell, 2005, 17(8): 2255-2270.
doi: 10.1105/tpc.105.033464 pmid: 16006578 |
[18] | Blázquez M. Flower development pathways[J]. J Cell Sci, 2000, 113(Pt 20): 3547-3548. |
[19] | Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana[J]. Annu Rev Plant Biol, 2004, 55: 521-535. |
[20] | Harig L, Beinecke FA, Oltmanns J, et al. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco[J]. Plant J, 2012, 72(6): 908-921. |
[21] |
Schmidt GW, Delaney SK. Stable internal reference genes for normalization of real-time RT-PCR in tobacco(Nicotiana tabacum)during development and abiotic stress[J]. Mol Genet Genomics, 2010, 283(3): 233-241.
doi: 10.1007/s00438-010-0511-1 pmid: 20098998 |
[22] | 武明珠, 刘瑞霞, 王中, 等. 利用VIGS技术研究NtbHLH93基因在烟草甾醇代谢中的功能[J]. 烟草科技, 2019, 52(6): 16-22. |
Wu MZ, Liu RX, Wang Z, et al. Study on function of NtbHLH93 in sterol metabolism of tobacco by VIGS[J]. Tob Sci Technol, 2019, 52(6): 16-22. | |
[23] |
李剑峰, 李婷, 贾小平. PRRs家族功能基因的研究进展[J]. 植物遗传资源学报, 2019, 20(6): 1399-1407.
doi: 10.13430/j.cnki.jpgr.20190403001 |
Li JF, Li T, Jia XP. Advances on unlocking the functional basis of PRRs family genes[J]. J Plant Genet Resour, 2019, 20(6): 1399-1407. | |
[24] |
Nakamichi N, Takao SR, Kudo T, et al. Improvement of Arabidopsis biomass and cold, drought and salinity stress tolerance by modified circadian clock-associated PSEUDO-RESPONSE REGULATORs[J]. Plant Cell Physiol, 2016, 57(5): 1085-1097.
doi: 10.1093/pcp/pcw057 pmid: 27012548 |
[25] | 向芬, 黄帅, 赵小英, 等. 拟南芥prr5突变体对ABA 的响应[J]. 激光生物学报, 2013, 22(6): 546-550. |
Xiang F, Huang S, Zhao XY, et al. The response of the prr5 mutant to ABA in Arabidopsis thaliana[J]. Acta Laser Biology Sinica, 2013, 22(6): 546-550. | |
[26] |
Nakamichi N, Kita M, Niinuma K, et al. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway[J]. Plant Cell Physiol, 2007, 48(6): 822-832.
doi: 10.1093/pcp/pcm056 pmid: 17504813 |
[27] |
Hayama R, Sarid-Krebs L, Richter R, et al. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length[J]. EMBO J, 2017, 36(7): 904-918.
doi: 10.15252/embj.201693907 pmid: 28270524 |
[28] |
贾小平, 李剑峰, 张博, 等. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
doi: 10.3724/SP.J.1006.2021.04139 |
Jia XP, Li JF, Zhang B, et al. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet(Setaria italica L.)[J]. Acta Agron Sin, 2021, 47(4): 638-649. | |
[29] | 王玉岚. 生物钟基因OsPRR37耐旱功能的研究及其编辑在水稻育种中的应用[D]. 武汉: 华中农业大学, 2022. |
Wang YL. Study on drought resistance function of biological clock gene OsPRR37 and application of gene editing in rice breeding[D]. Wuhan: Huazhong Agricultural University, 2022. | |
[30] |
Gao H, Jin MN, Zheng XM, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice[J]. Proc Natl Acad Sci USA, 2014, 111(46): 16337-16342.
doi: 10.1073/pnas.1418204111 pmid: 25378698 |
[31] | Li CC, Ma J, Wang GP, et al. Exploring the SiCCT gene family and its role in heading date in foxtail millet[J]. Front Plant Sci, 2022, 13: 863298. |
[32] |
Campoli C, Shtaya M, Davis SJ, et al. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs[J]. BMC Plant Biol, 2012, 12: 97.
doi: 10.1186/1471-2229-12-97 pmid: 22720803 |
[33] |
Yamamoto Y, Sato E, Shimizu T, et al. Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis[J]. Plant Cell Physiol, 2003, 44(11): 1119-1130.
pmid: 14634148 |
[34] | Ito S, Kawamura H, Niwa Y, et al. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1(TOC1)gene[J]. Plant Cell Physiol, 2009, 50(2): 290-303. |
[35] | Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development[J]. Plant Cell Environ, 2012, 35(10): 1742-1755. |
[36] |
Wang LW, Sun S, Wu TT, et al. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean[J]. Plant Biotechnol J, 2020, 18(9): 1869-1881.
doi: 10.1111/pbi.13346 pmid: 31981443 |
[1] | LI Yu-qing, WU Nan, LUO Jian-rang. Cloning and Functional Analysis of bHLH Gene Related to Anthocyanin Synthesis in Paeonia qiui [J]. Biotechnology Bulletin, 2024, 40(8): 174-185. |
[2] | CUI Yuan-yuan, WANG Zhao-yi, BAI Shuang-yu, REN Yu-zhao, DOU Fei-fei, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Genome-wide Identification of Non-specific Phospholipase C Gene Family in Hordeum vulgare L. and Stress Expression Analysis at Seedling Stage [J]. Biotechnology Bulletin, 2024, 40(8): 74-82. |
[3] | YANG Wei, ZHAO Li-fen, TANG Bing, ZHOU Lin-bi, YANG Juan, MO Chuan-yuan, ZHANG Bao-hui, LI Fei, RUAN Song-lin, DENG Ying. Genome-wide Identification and Expression Analysis of the SRO Gene Family in Brassica juncea L. [J]. Biotechnology Bulletin, 2024, 40(8): 129-141. |
[4] | ZHOU Ran, WANG Xing-ping, LI Yan-xia, LUORENG Zhuo-ma. Analysis of LncRNA Differential Expression in Mammary Tissue of Cows with Staphylococcus aureus Mastitis [J]. Biotechnology Bulletin, 2024, 40(8): 320-328. |
[5] | ZHANG Ming-ya, PANG Sheng-qun, LIU Yu-dong, SU Yong-feng, NIU Bo-wen, HAN Qiong-qiong. Identification and Expression Analysis of FAD Gene Family in Solanum lycopersicum [J]. Biotechnology Bulletin, 2024, 40(7): 150-162. |
[6] | ZANG Wen-rui, MA Ming, CHE Gen, HASI Agula. Genome-wide Identification and Expression Pattern Analysis of BZR Transcription Factor Gene Family of Melon [J]. Biotechnology Bulletin, 2024, 40(7): 163-171. |
[7] | CHANG Xue-rui, WANG Tian-tian, WANG Jing. Identification and Analysis of E2 Gene Family in Pepper(Capsicum annuum L.) [J]. Biotechnology Bulletin, 2024, 40(6): 238-250. |
[8] | LIU Rong, TIAN Min-yu, LI Guang-ze, TAN Cheng-fang, RUAN Ying, LIU Chun-lin. Identification and Induced-expression Analysis of REVEILLE Family in Brassica napus L. [J]. Biotechnology Bulletin, 2024, 40(6): 161-171. |
[9] | LI Bo-jing, ZHENG La-mei, WU Wu-yun, GAO Fei, ZHOU Yi-jun. Evolution, Expression, and Functional Analysis of the HSP20 Gene Family from Simmondisa chinensis [J]. Biotechnology Bulletin, 2024, 40(6): 190-202. |
[10] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
[11] | LI Jia-xin, LI Hong-yan, LIU Li-e, ZHANG Tian, ZHOU Wu. Identification and Expression Analysis of the NRAMP Family in Seabuckthorn Under Lead Stress [J]. Biotechnology Bulletin, 2024, 40(5): 191-202. |
[12] | LOU Yin, GAO Hao-jun, WANG Xi, NIU Jing-ping, WANG Min, DU Wei-jun, YUE Ai-qin. Identification and Expression Pattern Analysis of GmHMGS Gene in Soybean [J]. Biotechnology Bulletin, 2024, 40(4): 110-121. |
[13] | CHEN Chun-lin, LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan. Identification and Expression Analysis of Epidermal Patterning Factor (EPF) Genes in Cucumis melo [J]. Biotechnology Bulletin, 2024, 40(4): 130-138. |
[14] | XIAO Ya-ru, JIA Ting-ting, LUO Dan, WU Zhe, LI Li-xia. Cloning and Expression Analysis of CsERF025L Transcription Factor in Cucumber [J]. Biotechnology Bulletin, 2024, 40(4): 159-166. |
[15] | YANG Wei-cheng, SUN Yan, YANG Qian, WANG Zhuang-lin, MA Ju-hua, XUE Jin-ai, LI Run-zhi. Genome-wide Identification of the FAX family in Gossypium hirsutum and Functional Analysis of GhFAX1 [J]. Biotechnology Bulletin, 2024, 40(3): 155-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||