Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 225-237.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0313
Previous Articles Next Articles
WEN Shao-fu(), JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li()
Received:
2024-03-31
Online:
2024-09-26
Published:
2024-10-12
Contact:
HOU Xiu-li
E-mail:2319473994@qq.com;hxlyn@aliyun.com
WEN Shao-fu, JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li. Effects of Phosphate-solubilizing Bacteria on the Rhizosphere Soil Properties and Microbial Community Structure of Maize in Lead-contaminated Soil[J]. Biotechnology Bulletin, 2024, 40(9): 225-237.
Fig. 1 Distribution of different abundances of bacteria(A)and fungi(B)at the OTUs level in different treatments CK: Sterile water control; T1: luria-bertani medium; T2: supernatant(bacterial secretion); T3: bacterial liquid(only containing bacterial cells); T4: fermentation broth(supernatant + bacterial cells). The same below
Fig. 2 Changes of Alpha diversity index of bacterial and fungal communities in maize rhizosphere soil ***,P < 0.001;**,P < 0.01;*,P < 0.05. The same below
处理 Treatment | 有效磷 AP /(mg·kg-1) | 碱解氮 AN /(mg·kg-1) | 脲酶 Urease/(mg·kg-1, 24-1) | 酸性磷酸酶 Acid phosphatase /(mg·kg-1, 24-1) | pH |
---|---|---|---|---|---|
CK | 16.77 ±1.68a | 133.00 ±9.90b | 21783.70 ±3288.05a | 270.00 ±33.00c | 7.12 ±0.05a |
T1 | 17.48 ±1.48a | 122.50 ±4.95b | 2901.60 ±274.99c | 505.00 ±16.50ab | 7.11 ±0.04a |
T2 | 14.41 ±0.38b | 196.00 ±19.80a | 14216.60 ±1860.19b | 486.67 ±103.71ab | 6.70 ±0.08b |
T3 | 13.88 ±0.13b | 185.50 ±34.65a | 4473.30 ±1357.42c | 451.67 ±40.07b | 6.57 ±0.03c |
T4 | 12.36 ±0.54b | 157.50 ±4.95ab | 19522.25±46.03a | 574.44 ±9.62a | 6.71 ±0.05b |
Table 1 Properties of maize rhizosphere soil
处理 Treatment | 有效磷 AP /(mg·kg-1) | 碱解氮 AN /(mg·kg-1) | 脲酶 Urease/(mg·kg-1, 24-1) | 酸性磷酸酶 Acid phosphatase /(mg·kg-1, 24-1) | pH |
---|---|---|---|---|---|
CK | 16.77 ±1.68a | 133.00 ±9.90b | 21783.70 ±3288.05a | 270.00 ±33.00c | 7.12 ±0.05a |
T1 | 17.48 ±1.48a | 122.50 ±4.95b | 2901.60 ±274.99c | 505.00 ±16.50ab | 7.11 ±0.04a |
T2 | 14.41 ±0.38b | 196.00 ±19.80a | 14216.60 ±1860.19b | 486.67 ±103.71ab | 6.70 ±0.08b |
T3 | 13.88 ±0.13b | 185.50 ±34.65a | 4473.30 ±1357.42c | 451.67 ±40.07b | 6.57 ±0.03c |
T4 | 12.36 ±0.54b | 157.50 ±4.95ab | 19522.25±46.03a | 574.44 ±9.62a | 6.71 ±0.05b |
[1] | 张慧娟, 王齐, 高媛, 等. 水稻重金属积累分布与风险分析研究综述[J]. 环境科学与技术, 2020, 43(8): 64-72. |
Zhang HJ, Wang Q, Gao Y, et al. Accumulation, distribution and risk assessment of heavy metals in rice: a review[J]. Environ Sci Technol, 2020, 43(8): 64-72. | |
[2] | Beattie RE, Henke W, Campa MF, et al. Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased[J]. Soil Biol Biochem, 2018, 126: 57-63. |
[3] | 孙进博, 胡玲燕, 李博, 等. 石灰与生物炭对污染土壤理化性质、万寿菊生长与镉铅含量的影响[J]. 环境化学, 2024, 43(9): 1-11. |
Sun JB, Hu LY, Li B, et al. Effects of lime and biochar on physicochemical properties of polluted soil, gro-wth and content of cadmium and lead of marigold[J]. Environmental Chemistry, 2024, 43(9): 1-11. | |
[4] | Serna L. Maize stomatal responses against the climate change[J]. Front Plant Sci, 2022, 13: 952146. |
[5] | Khan S, Hesham AELL, Qiao M, et al. Effects of Cd and Pb on soil microbial community structure and activities[J]. Environ Sci Pollut Res Int, 2010, 17(2): 288-296. |
[6] |
Song JW, Shen QL, Wang L, et al. Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure[J]. Environ Pollut, 2018, 243(Pt A): 510-518.
doi: S0269-7491(18)32107-9 pmid: 30216883 |
[7] | Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health[J]. Soil Biol Biochem, 2021, 153: 108111. |
[8] | Ma SY, Qiao LK, Liu XX, et al. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways[J]. Environ Res, 2022, 214(Pt 2): 113822. |
[9] | Wood JL, Tang CX, Franks AE. Microbial associated plant growth and heavy metal accumulation toimprove phytoextraction of contaminated soils[J]. Soil Biol Biochem, 2016, 103: 131-137. |
[10] | Yin SQ, Zhang X, Xie JQ, et al. Change of microbial communities in heavy metals-contaminated rhizosphere soil with ectomycorrhizal fungi Suillus luteus inoculation[J]. Appl Soil Ecol, 2023, 190: 105019. |
[11] | 刘英杰, 张丽红, 张宏, 等. 溶磷微生物在土壤磷循环中的作用研究进展[J]. 微生物学通报, 2023, 50(8): 3671-3687. |
Liu YJ, Zhang LH, Zhang H, et al. Role of phosphate solubilizing microorganisms in soil phosphorus cycle: a review[J]. Microbiol China, 2023, 50(8): 3671-3687. | |
[12] |
赵光绪, 杨合同, 邵晓波, 等. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0268 |
Zhao GX, Yang HT, Shao XB, et al. Phosphate-solubilizing properties and optimization of cultivation conditions of Penicillium rubens: a highly efficient phosphate solubilizer[J]. Biotechnol Bull, 2023, 39(9): 71-83. | |
[13] | Zaib S, Zubair A, Abbas S, et al. Plant growth-promoting rhizobacteria(PGPR)reduce adverse effects of salinity and drought stresses by regulating nutritional profile of barley[J]. Appl Environ Soil Sci, 2023, 2023: 7261784. |
[14] | Liu YH, Nessa A, Zheng QY, et al. Inoculations of phosphate-solubilizing bacteria alter soil microbial community and improve phosphorus bioavailability for moso bamboo(Phyllostachys edulis)growth[J]. Appl Soil Ecol, 2023, 189: 104911. |
[15] |
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Front Microbiol, 2017, 8: 971.
doi: 10.3389/fmicb.2017.00971 pmid: 28626450 |
[16] | Liang JL, Liu J, Jia P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. ISME J, 2020, 14(6): 1600-1613. |
[17] |
Li CK, Li QS, Wang ZP, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite[J]. Sci Rep, 2019, 9(1): 15291.
doi: 10.1038/s41598-019-51804-7 pmid: 31653926 |
[18] | Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. J Soil Sci Plant Nutr, 2021, 21(1): 49-68. |
[19] | He M, Zhong XJ, Xia Y, et al. Long-term nitrogen addition exerts minor effects on microbial community but alters sensitive microbial species in a subtropical natural forest[J]. Forests, 2023, 14(5): 928. |
[20] | Wang QQ, Sheng JD, Pan LY, et al. Soil property determines the ability of rhizobial inoculation to enhance nitrogen fixation and phosphorus acquisition in soybean[J]. Appl Soil Ecol, 2022, 171: 104346. |
[21] | Billah M, Khan M, Bano A, et al. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture[J]. Geomicrobiol J, 2019, 36(10): 904-916. |
[22] | 马莹, 姜岸, 石孝均, 等. 微生物胞外多糖的合成及其在重金属修复中的作用机制与应用[J]. 微生物学报, 2024, 64(3): 701-719. |
Ma Y, Jiang A, Shi XJ, et al. Synthesis of microbial exopolysaccharides and their mechanisms and applications in heavy metal remediation[J]. Acta Microbiol Sin, 2024, 64(3): 701-719. | |
[23] |
Zaidi A, Khan MS, Ahemad M, et al. Plant growth promotion by phosphate solubilizing bacteria[J]. Acta Microbiol Immunol Hung, 2009, 56(3): 263-284.
doi: 10.1556/AMicr.56.2009.3.6 pmid: 19789141 |
[24] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000. | |
[25] | 王宏燕, 韩凯鑫, 冯丽荣, 等. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 2023, 54(5): 28-37. |
Wang HY, Han KX, Feng LR, et al. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. J Northeast Agric Univ, 2023, 54(5): 28-37. | |
[26] | Qiao LK, Liu XX, Zhang S, et al. Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: a metagenomics approach[J]. Sci Total Environ, 2021, 779: 146502. |
[27] | Qin SM, Zhang HY, He YH, et al. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria[J]. Sci Total Environ, 2023, 868: 161685. |
[28] | Diels L, Mergeay M. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals[J]. Appl Environ Microbiol, 1990, 56(5): 1485-1491. |
[29] | Zhao XQ, Huang J, Lu J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicol Environ Saf, 2019, 170: 218-226. |
[30] | Zhang C, Liu GB, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biol Biochem, 2016, 97: 40-49. |
[31] | Gonçalves OS, Fernandes AS, Tupy SM, et al. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum[J]. Soil Biol Biochem, 2024, 192: 109369. |
[32] | Liu ML, Li XR, Zhu RQ, et al. Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process[J]. Environ Microbiol Rep, 2021, 13(4): 411-424. |
[33] | Zhou XR, Chen XK, Qi XN, et al. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow[J]. Front Microbiol, 2023, 14: 1136187. |
[34] | Kolton M, Sela N, Elad Y, et al. Correction: comparative genomic analysis indicates that niche adaptation of terrestrial flavobacteria is strongly linked to plant glycan metabolism[J]. PLoS One, 2014, 9(1). |
[35] |
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility[J]. Adv Appl Microbiol, 2020, 110: 63-98.
doi: S0065-2164(19)30049-8 pmid: 32386606 |
[36] | Saghaï A, Wittorf L, Philippot L, et al. Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere[J]. Appl Soil Ecol, 2022, 169: 104224. |
[37] |
Kuppusamy S, Thavamani P, Megharaj M, et al. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation[J]. J Hazard Mater, 2016, 317: 169-179.
doi: S0304-3894(16)30504-0 pmid: 27267691 |
[38] | Polti MA, Aparicio JD, Benimeli CS, et al. Simultaneous bioremediation of Cr(VI)and lindane in soil by Actinobacteria[J]. Int Biodeterior Biodegrad, 2014, 88: 48-55. |
[39] | Lin YB, Ye YM, Hu YM, et al. The variation in microbial community structure under different heavy metal contamination levels in paddy soils[J]. Ecotoxicol Environ Saf, 2019, 180: 557-564. |
[40] | Iram S, Ahmad I, Javed B, et al. Fungal tolerance to heavy metals[J]. Pak J Bot, 2009, 41: 2583-2594. |
[41] | Muneer MA, Huang XM, Hou W, et al. Response of fungal diversity, community composition, and functions to nutrients management in red soil[J]. J Fungi, 2021, 7(7): 554. |
[42] | Yuan J, Wen T, Zhang H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. ISME J, 2020, 14(12): 2936-2950. |
[43] |
Asaf S, Numan M, Khan AL, et al. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth[J]. Crit Rev Biotechnol, 2020, 40(2): 138-152.
doi: 10.1080/07388551.2019.1709793 pmid: 31906737 |
[44] | Li X, Geng XY, Xie RR, et al. The endophytic bacteria isolated from elephant grass(Pennisetum purpureum Schumach)promote plant growth and enhance salt tolerance of Hybrid Pennisetum[J]. Biotechnol Biofuels, 2016, 9(1): 190. |
[45] | Li ZL, Zhang KX, Qiu LX, et al. Soil microbial co-occurrence patterns under controlled-release urea and fulvic acid applications[J]. Microorganisms, 2022, 10(9): 1823. |
[46] | Teulet A, Gully D, Rouy Z, et al. Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium[J]. Microb Genom, 2020, 6(9): mgen000407. |
[47] | Lewis JA, Larkin RP. Formulation of the biocontrol fungus Cladorrhinum foecundissimumto reduce damping-off diseases caused by Rhizoctonia solani and Pythium ultimum[J]. Biol Contr, 1998, 12(3): 182-190. |
[48] |
Azadi N, Raiesi F. Salinization depresses soil enzyme activity in metal-polluted soils through increases in metal mobilization and decreases in microbial biomass[J]. Ecotoxicology, 2021, 30(6): 1071-1083.
doi: 10.1007/s10646-021-02433-2 pmid: 34101047 |
[49] |
Shen GQ, Lu YT, Zhou QX, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 2005, 61(8): 1175-1182.
pmid: 16263387 |
[50] | Wei T, Gao H, An FQ, et al. Performance of heavy metal-immobilizing bacteria combined with biochar on remediation of cadmium and lead co-contaminated soil[J]. Environ Geochem Health, 2023, 45(8): 6009-6026. |
[51] | Frey B, Moser B, Tytgat B, et al. Long-term N-addition alters the community structure of functionally important N-cycling soil microorganisms across global grasslands[J]. Soil Biol Biochem, 2023, 176: 108887. |
[52] | Feng WR, Xiao X, Li JJ, et al. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils[J]. Chemosphere, 2023, 315: 137730. |
[53] | Liu HK, Wang C, Xie YL, et al. Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region[J]. J Hazard Mater, 2020, 392: 122478. |
[54] | Liu BH, Wang SX, Wang J, et al. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris[J]. Sci Total Environ, 2020, 719: 137475. |
[55] | Mousavi R, Rasouli-Sadaghiani M, Sepehr E, et al. Improving phosphorus availability and wheat yield in saline soil of the lake urmia basin through enriched biochar and microbial inoculation[J]. Agriculture, 2023, 13(4): 805. |
[56] | Hu XW, Wang JL, Lv Y, et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter[J]. Front Microbiol, 2021, 12: 707786. |
[57] | Guo HH, Nasir M, Lv JL, et al. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing[J]. Ecotoxicol Environ Saf, 2017, 144: 300-306. |
[58] | Zhou YC, Zhao XQ, Jiang Y, et al. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria[J]. Sci Total Environ, 2023, 861: 160649. |
[59] | Yu XN, Jiang NJ, Yang Y, et al. Heavy metals remediation through bio-solidification: potential application in environmental geotechnics[J]. Ecotoxicol Environ Saf, 2023, 263: 115305. |
[1] | GAO Yu-kun, ZHANG Jian-dong, YANG Pu-yuan, CHEN Dong-ming, WANG Zhi-bo, TIAN Yi-jin, Zakey Eldinn. E. A. Khlid, CUI Jiang-hui, CHANG Jin-hua. Responses of Sorghum Rhizosphere Soil Bacterial Communities to Salt Stress [J]. Biotechnology Bulletin, 2024, 40(4): 203-216. |
[2] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[3] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[4] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[5] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[6] | SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities [J]. Biotechnology Bulletin, 2022, 38(6): 157-165. |
[7] | HU Shan, LIANG Wei-qu, HUANG Hao, XU Cong, LUO Hua-jian, HU Chu-wei, HUANG Xiao-yan, CHEN Shi-li. Screening,Identification and Antagonism of Phosphate-Solubilizing Bacteria from the Compost Chinese Medicinal Herbal Residues [J]. Biotechnology Bulletin, 2022, 38(3): 92-102. |
[8] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[9] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[10] | LI Wen, WANG Tao. The Characteristics of Phosphate Solubilization of Rock Phosphate by Phosphate-solubilizing Bacterium JL-1 [J]. Biotechnology Bulletin, 2020, 36(8): 34-44. |
[11] | ZHANG Yong-min, WANG Tian-hui, WANG Ping. Identification and Degradation Characteristics of Microbial Community Degrading Phenanthrene from Surface Sediments [J]. Biotechnology Bulletin, 2020, 36(6): 128-135. |
[12] | HAN Xue-jiao, ZENG Qing-wei, ZHAO Yu-ping. Identification of Inorganic Phosphate-solubilizing Bacterium Mp1-Ha4 in Poplar Rhizosphere and Its Phosphate-solubilizing Mechanism [J]. Biotechnology Bulletin, 2020, 36(3): 141-147. |
[13] | LIU Ji-ai, SHU Ai-ping, LIU Guang-rong, LI Zu-zhang, LIU Zeng-bing, GAO Zheng. Research Progress on Effect of Fertilization on Soil Properties and Microbiome [J]. Biotechnology Bulletin, 2019, 35(9): 21-28. |
[14] | YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2019, 35(1): 120-130. |
[15] | TIAN Jing, XU Xiao-lin, KANG Yan-shun, TANG Wei-hua, LIU Si-qi. Screening and Characteristics of a Broad Spectrum Fungus Degrading Polycyclic-aromatic Hydrocarbons:Aspergillus flavus AD-X-1 [J]. Biotechnology Bulletin, 2018, 34(8): 115-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||