Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (10): 277-291.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0302
Previous Articles Next Articles
JI Meng-ran(
), ZHANG Rui-ying, LIU Hong-dan, FENG Wei-meng, LIU Xiu-yu, MA Rui(
), CHEN Sui-qing(
)
Received:2025-03-20
Online:2025-10-26
Published:2025-10-28
Contact:
MA Rui, CHEN Sui-qing
E-mail:r851368300@163.com;ruimazy@163.com;suiqingchen0371@163.com
JI Meng-ran, ZHANG Rui-ying, LIU Hong-dan, FENG Wei-meng, LIU Xiu-yu, MA Rui, CHEN Sui-qing. Combined Metabolome and Transcriptome Analysis of the Differences in Terpenoids between New and Old Leaves of Artemisia argyi H. Lév. & Vaniot[J]. Biotechnology Bulletin, 2025, 41(10): 277-291.
Fig. 1 New leaves and old leaves of A. argyi.New leaves (front), old leaves (front), new leaves (underside), and old leaves (underside) from left to right
Fig. 2 Principal component analysis and orthogonal partial least squares discriminant analysisA: Principal component analysis of metabolites; B: OPLS-DA simulation verification diagram; C: OPLS-DA score graph. The same color in the figure A refers to the same group. Numbers 1 to 6 indicate six different repetitions in the same group, For example, NS1 refers to the first repetition of the new leaf
Fig. 3 Volcano map of differential metabolite componentsIn the figure, red indicates upregulated metabolites (1), blue indicates downregulated metabolites (149), and gray indicates metabolites with no significant differences (1 099)
Fig. 4 Heatmap of differential metaboliteNS1-6 are differential metabolites of new leaves, and NX1-6 are differential metabolites of old leaves. The ordinate is the metabolite category
序号 No. | 分子式 Molecular formula | 代谢物中文名 Metabolite Chinese name | 代谢物英文名 Metabolite English name | CAS | VIP | P_value |
|---|---|---|---|---|---|---|
| 1 | C15H24 | (4R,4aR,8aR)-十氢-1,6-双(亚甲基)-4-(1-甲基乙基)-萘 | Naphthalene,decahydro-1,6-bis(methylene)-4-(1-methylethyl)-,(4R,4aR,8aR)-rel- | 30021-46-6 | 1.91 | 0.01 |
| 2 | C15H26O | 阔叶缬草醚 | Kessane | 3321-66-2 | 1.36 | 0.05 |
| 3 | C10H16 | α-水芹烯 | α-phellandrene | 99-83-2 | 2.10 | 0.00 |
| 4 | C10H18O | (2R,5R)-2-甲基-5-丙烷-2-基双环(3.1.0)己烷-2-醇 | (2S,5R)-2-methyl-5-propan-2-ylbicyclo(3.1.0)hexan-2-ol | 17699-16-0 | 1.67 | 0.02 |
| 5 | C10H18O | 反式-5-甲基-2-(1-甲基乙基)-环己酮 | Cyclohexanone, 5-methyl-2-(1-methylethyl)-, trans- | 89-80-5 | 1.37 | 0.04 |
| 6 | C15H24 | α-古巴烯 | Copaene | 3856-25-5 | 1.50 | 0.05 |
| 7 | C15H24 | β-瑟林烯 | Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-, (4aR, 7R, 8aS)- | 17066-67-0 | 1.56 | 0.03 |
| 8 | C15H24 | γ-芹子烯 | (4aR-trans)-decahydro-4a-methyl-1-methylene-7-(1-methylethylidene)-Naphthalene | 515-17-3 | 1.50 | 0.05 |
| 9 | C15H22 | α-姜黄烯 | Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl- | 644-30-4 | 1.90 | 0.01 |
| 10 | C15H22 | 菖蒲烯 | Naphthalene, 1, 2, 3, 4-tetrahydro-1, 6-dimethyl-4-(1-methylethyl)-, (1S-cis)- | 483-77-2 | 1.58 | 0.03 |
| 11 | C13H20O2 | 4-(2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基)-3-丁烯-2-酮 | 3-Buten-2-one, 4-(2, 2, 6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)- | 23267-57-4 | 1.54 | 0.04 |
| 12 | C15H24 | 7,11-二甲基-3-亚甲基十二烷-1,6,10-三烯 | 7, 11-dimethyl-3-methylenedodeca-1, 6, 10-triene | 77129-48-7 | 1.94 | 0.01 |
| 13 | C10H14O2 | 紫苏酸 | 1-Cyclohexene-1-carboxylic acid, 4-(1-methylethenyl)- | 7694-45-3 | 1.54 | 0.03 |
| 14 | C14H16 | 母菊薁 | Chamazulene | 529-05-5 | 2.04 | 0.00 |
| 15 | C15H24 | (+)-β-柏木烯 | 1H-3a, 7-Methanoazulene, octahydro-3, 8, 8-trimethyl-6-methylene-, (3R, 3aS, 7S, 8aS)- | 546-28-1 | 1.85 | 0.01 |
| 16 | C15H24 | (+)-表-双环倍半水芹烯 | (+)-Epi-bicyclosesquiphellandrene | 54274-73-6 | 1.75 | 0.02 |
| 17 | C10H16O | 松樟酮 | Pinocamphone | 547-60-4 | 1.58 | 0.04 |
| 18 | C20H32 | (4aS,8S,8aS)-4,4,8a-三甲基-7-亚甲基-8-(3-甲基戊-2,4-二烯基)-2,3,4a,5,6,8-六氢-1H-萘 | (4aS, 8S, 8aS)-4, 4, 8a-trimethyl-7-methylidene-8-(3-methylpenta-2, 4-dienyl)-2, 3, 4a, 5, 6, 8-hexahydro-1H-naphthalene | 5957-33-5 | 1.23 | 0.03 |
| 19 | C15H24 | 雪松烯 | Cedrene | 11028-42-5 | 2.03 | 0.00 |
| 20 | C10H16O2 | 伊蚁内酯 | Iridomyrmecin | 485-43-8 | 1.90 | 0.02 |
| 21 | C15H20 | α-脱氢芳烃雪松烯 | α-Dehydro-ar-himachalene | 78204-62-3 | 1.70 | 0.01 |
| 22 | C15H24 | α-香柠檬烯 | α-Bergamotene | 17699-05-7 | 1.84 | 0.01 |
| 23 | C15H24 | (1R,3aS,8aS)-7-异丙基-1,4-二甲基-1,2,3,3a,6,8a-六氢茚 | (1R, 3aS, 8aS)-7-Isopropyl-1, 4-dimethyl-1, 2, 3, 3a, 6, 8a-hexahydroazulene | 36577-33-0 | 1.86 | 0.01 |
| 24 | C10H16O | 2-(4-甲基-2,4-环己二烯)-2-丙醇 | 2-(4-Methyl-2, 4-cyclohexadienyl)-2-propanol | 1686-20-0 | 1.59 | 0.03 |
| 25 | C15H24 | [1S-(1R*,9S*)]10,10-二甲基-2,6-双(亚甲基)-双环[7.2.0]十一烷 | Bicyclo[7.2.0]undecane, 10, 10-dimethyl-2, 6-bis(methylene)-, [1S-(1R*, 9S*)]- | 136296-38-3 | 1.38 | 0.05 |
| 26 | C15H24 | 10,10-二甲基-2,6-二亚甲基双环[7.2.0]十一烷 | 10, 10-Dimethyl-2, 6-dimethylenebicyclo[7.2.0]undecane | 357414-37-0 | 1.86 | 0.01 |
| 27 | C10H16O | 5-甲基-2-(1-甲基亚乙基)-环己酮 | Cyclohexanone, 5-methyl-2-(1-methylethylidene)- | 15932-80-6 | 1.80 | 0.02 |
| 28 | C15H24 | (1S,4S,4aR)-1-异丙基-4-甲基-7-亚甲基-1,2,3,4,4a,5,6,7-八氢萘 | (1S, 4S, 4aR)-1-Isopropyl-4-methyl-7-methylene-1, 2, 3, 4, 4a, 5, 6, 7-octahydronaphthalene | 157477-72-0 | 1.85 | 0.02 |
| 29 | C15H24 | 缬草-4,7(11)-二烯 | Valerena-4, 7(11)-diene | 351222-66-7 | 1.88 | 0.02 |
| 30 | C15H24 | (4R,4aS,6S)-4,4a-二甲基-6-(丙-1-烯-2-基)-1,2,3,4,4a,5,6,7-八氢萘 | (4R, 4aS, 6S)-4, 4a-Dimethyl-6-(prop-1-en-2-yl)- 1, 2, 3, 4, 4a, 5, 6, 7-octahydronaphthalene | 823810-22-6 | 1.83 | 0.01 |
| 31 | C15H24 | (1R,3aR,4aR,8aR)-1,4,4,6-四甲基-1,2,3,3a,4,4a,7,8-八氢环戊烯[ | (1R, 3aR, 4aR, 8aR)-1, 4, 4, 6-Tetramethyl-1, 2, 3, 3a, 4, 4a, 7, 8-octahydrocyclopenta[ | 94482-89-0 | 1.70 | 0.02 |
| 32 | C15H22 | (2R,4aS)-4a,8-二甲基-2-(丙-1-烯-2-基)-1,2,3,4,4a,5-六氢萘 | (2R, 4aS)-4a, 8-Dimethyl-2-(prop-1-en-2-yl)-1, 2, 3, 4, 4a, 5-hexahydronaphthalene | 82462-31-5 | 1.64 | 0.03 |
| 33 | C15H24 | 2,6,6,8-四甲基三环[5.3.1.01,5]十一碳-9-烯 | 2, 6, 6, 8-tetramethyltricyclo[5.3.1.01,5]undec-9-ene | 21996-77-0 | 1.54 | 0.05 |
Table 1 Terpenoid differential metabolites
序号 No. | 分子式 Molecular formula | 代谢物中文名 Metabolite Chinese name | 代谢物英文名 Metabolite English name | CAS | VIP | P_value |
|---|---|---|---|---|---|---|
| 1 | C15H24 | (4R,4aR,8aR)-十氢-1,6-双(亚甲基)-4-(1-甲基乙基)-萘 | Naphthalene,decahydro-1,6-bis(methylene)-4-(1-methylethyl)-,(4R,4aR,8aR)-rel- | 30021-46-6 | 1.91 | 0.01 |
| 2 | C15H26O | 阔叶缬草醚 | Kessane | 3321-66-2 | 1.36 | 0.05 |
| 3 | C10H16 | α-水芹烯 | α-phellandrene | 99-83-2 | 2.10 | 0.00 |
| 4 | C10H18O | (2R,5R)-2-甲基-5-丙烷-2-基双环(3.1.0)己烷-2-醇 | (2S,5R)-2-methyl-5-propan-2-ylbicyclo(3.1.0)hexan-2-ol | 17699-16-0 | 1.67 | 0.02 |
| 5 | C10H18O | 反式-5-甲基-2-(1-甲基乙基)-环己酮 | Cyclohexanone, 5-methyl-2-(1-methylethyl)-, trans- | 89-80-5 | 1.37 | 0.04 |
| 6 | C15H24 | α-古巴烯 | Copaene | 3856-25-5 | 1.50 | 0.05 |
| 7 | C15H24 | β-瑟林烯 | Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-, (4aR, 7R, 8aS)- | 17066-67-0 | 1.56 | 0.03 |
| 8 | C15H24 | γ-芹子烯 | (4aR-trans)-decahydro-4a-methyl-1-methylene-7-(1-methylethylidene)-Naphthalene | 515-17-3 | 1.50 | 0.05 |
| 9 | C15H22 | α-姜黄烯 | Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl- | 644-30-4 | 1.90 | 0.01 |
| 10 | C15H22 | 菖蒲烯 | Naphthalene, 1, 2, 3, 4-tetrahydro-1, 6-dimethyl-4-(1-methylethyl)-, (1S-cis)- | 483-77-2 | 1.58 | 0.03 |
| 11 | C13H20O2 | 4-(2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基)-3-丁烯-2-酮 | 3-Buten-2-one, 4-(2, 2, 6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)- | 23267-57-4 | 1.54 | 0.04 |
| 12 | C15H24 | 7,11-二甲基-3-亚甲基十二烷-1,6,10-三烯 | 7, 11-dimethyl-3-methylenedodeca-1, 6, 10-triene | 77129-48-7 | 1.94 | 0.01 |
| 13 | C10H14O2 | 紫苏酸 | 1-Cyclohexene-1-carboxylic acid, 4-(1-methylethenyl)- | 7694-45-3 | 1.54 | 0.03 |
| 14 | C14H16 | 母菊薁 | Chamazulene | 529-05-5 | 2.04 | 0.00 |
| 15 | C15H24 | (+)-β-柏木烯 | 1H-3a, 7-Methanoazulene, octahydro-3, 8, 8-trimethyl-6-methylene-, (3R, 3aS, 7S, 8aS)- | 546-28-1 | 1.85 | 0.01 |
| 16 | C15H24 | (+)-表-双环倍半水芹烯 | (+)-Epi-bicyclosesquiphellandrene | 54274-73-6 | 1.75 | 0.02 |
| 17 | C10H16O | 松樟酮 | Pinocamphone | 547-60-4 | 1.58 | 0.04 |
| 18 | C20H32 | (4aS,8S,8aS)-4,4,8a-三甲基-7-亚甲基-8-(3-甲基戊-2,4-二烯基)-2,3,4a,5,6,8-六氢-1H-萘 | (4aS, 8S, 8aS)-4, 4, 8a-trimethyl-7-methylidene-8-(3-methylpenta-2, 4-dienyl)-2, 3, 4a, 5, 6, 8-hexahydro-1H-naphthalene | 5957-33-5 | 1.23 | 0.03 |
| 19 | C15H24 | 雪松烯 | Cedrene | 11028-42-5 | 2.03 | 0.00 |
| 20 | C10H16O2 | 伊蚁内酯 | Iridomyrmecin | 485-43-8 | 1.90 | 0.02 |
| 21 | C15H20 | α-脱氢芳烃雪松烯 | α-Dehydro-ar-himachalene | 78204-62-3 | 1.70 | 0.01 |
| 22 | C15H24 | α-香柠檬烯 | α-Bergamotene | 17699-05-7 | 1.84 | 0.01 |
| 23 | C15H24 | (1R,3aS,8aS)-7-异丙基-1,4-二甲基-1,2,3,3a,6,8a-六氢茚 | (1R, 3aS, 8aS)-7-Isopropyl-1, 4-dimethyl-1, 2, 3, 3a, 6, 8a-hexahydroazulene | 36577-33-0 | 1.86 | 0.01 |
| 24 | C10H16O | 2-(4-甲基-2,4-环己二烯)-2-丙醇 | 2-(4-Methyl-2, 4-cyclohexadienyl)-2-propanol | 1686-20-0 | 1.59 | 0.03 |
| 25 | C15H24 | [1S-(1R*,9S*)]10,10-二甲基-2,6-双(亚甲基)-双环[7.2.0]十一烷 | Bicyclo[7.2.0]undecane, 10, 10-dimethyl-2, 6-bis(methylene)-, [1S-(1R*, 9S*)]- | 136296-38-3 | 1.38 | 0.05 |
| 26 | C15H24 | 10,10-二甲基-2,6-二亚甲基双环[7.2.0]十一烷 | 10, 10-Dimethyl-2, 6-dimethylenebicyclo[7.2.0]undecane | 357414-37-0 | 1.86 | 0.01 |
| 27 | C10H16O | 5-甲基-2-(1-甲基亚乙基)-环己酮 | Cyclohexanone, 5-methyl-2-(1-methylethylidene)- | 15932-80-6 | 1.80 | 0.02 |
| 28 | C15H24 | (1S,4S,4aR)-1-异丙基-4-甲基-7-亚甲基-1,2,3,4,4a,5,6,7-八氢萘 | (1S, 4S, 4aR)-1-Isopropyl-4-methyl-7-methylene-1, 2, 3, 4, 4a, 5, 6, 7-octahydronaphthalene | 157477-72-0 | 1.85 | 0.02 |
| 29 | C15H24 | 缬草-4,7(11)-二烯 | Valerena-4, 7(11)-diene | 351222-66-7 | 1.88 | 0.02 |
| 30 | C15H24 | (4R,4aS,6S)-4,4a-二甲基-6-(丙-1-烯-2-基)-1,2,3,4,4a,5,6,7-八氢萘 | (4R, 4aS, 6S)-4, 4a-Dimethyl-6-(prop-1-en-2-yl)- 1, 2, 3, 4, 4a, 5, 6, 7-octahydronaphthalene | 823810-22-6 | 1.83 | 0.01 |
| 31 | C15H24 | (1R,3aR,4aR,8aR)-1,4,4,6-四甲基-1,2,3,3a,4,4a,7,8-八氢环戊烯[ | (1R, 3aR, 4aR, 8aR)-1, 4, 4, 6-Tetramethyl-1, 2, 3, 3a, 4, 4a, 7, 8-octahydrocyclopenta[ | 94482-89-0 | 1.70 | 0.02 |
| 32 | C15H22 | (2R,4aS)-4a,8-二甲基-2-(丙-1-烯-2-基)-1,2,3,4,4a,5-六氢萘 | (2R, 4aS)-4a, 8-Dimethyl-2-(prop-1-en-2-yl)-1, 2, 3, 4, 4a, 5-hexahydronaphthalene | 82462-31-5 | 1.64 | 0.03 |
| 33 | C15H24 | 2,6,6,8-四甲基三环[5.3.1.01,5]十一碳-9-烯 | 2, 6, 6, 8-tetramethyltricyclo[5.3.1.01,5]undec-9-ene | 21996-77-0 | 1.54 | 0.05 |
| Sample | Length (bp) |
|---|---|
| Min-length | 59 |
| Max-length | 5 317 |
| Mean-length | 1 666 |
| N50 | 1 792 |
Table 2 Statistical results of polished consensus
| Sample | Length (bp) |
|---|---|
| Min-length | 59 |
| Max-length | 5 317 |
| Mean-length | 1 666 |
| N50 | 1 792 |
Fig. 6 Statistical diagram of functional annotationA: iso; B: unmap; C: novel. iso: The transcripts after structural annotation. unmap: The transcripts on the reference genome were not matched. novel: New gene. The same below
Fig. 11 Heat map of differential genes and differential metabolites associationRed indicates positive correlation and blue indicates negative correlation. The horizontal coordinate indicates the name of the gene. Among them, GWHGBRAE005564 is the gene sequencing code, and the corresponding gene was not found
| [1] | 国家药典委员会.中华人民共和国药典 [M]. 一部. 北京: 中国医药科技出版社, 2020. |
| Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China [M]. Volume I.Beijing:China Medical Science Press, 2020. | |
| [2] | 计辰洋, 任燕, 翟煦, 等. 基于功效古今演变的艾叶研究进展与应用思考 [J]. 世界中医药, 2024, 19(2): 279-284. |
| Ji CY, Ren Y, Zhai X, et al. Research progress and application of Artemisia argyi leaf based on the evolution of efficacy from ancient to modern times [J]. World Chin Med, 2024, 19(2): 279-284. | |
| [3] | 王倩倩, 郭蕊, 张丹, 等. 基于UPLC和HS-GC-MS的不同道地产区艾叶药材化学成分比较分析 [J]. 中国中药杂志, 2023, 48(20): 5509-5518. |
| Wang QQ, Guo R, Zhang D, et al. Comparison of chemical constituents in Artemisiae Argyi Folium from different Dao-di producing areas based on UPLC and HS-GC-MS [J]. China Journal of Chinese Materia Medica, 2023, 48(20): 5509-5518. | |
| [4] | 兰晓燕, 朱龙波, 黄显章, 等. 艾叶中主要化学成分的鉴定及其含量测定研究 [J]. 中草药, 2021, 52(24): 7630-7637. |
| Lan XY, Zhu LB, Huang XZ, et al. Study on identification and quantitation of main compounds in Artemisiae Argyi Folium [J]. Chinese Traditional and Herbal Drugs, 2021, 52(24): 7630-7637. | |
| [5] | 孙宗淼, 许秀萍. 艾不同部位有效成分含量的比较 [J]. 山西医科大学学报, 2023, 54(1): 114-118. |
| Sun ZM, Xu XP. Comparative study on contents of active components in different parts of Artemisia argyi Levl. [J]. Journal of Shanxi Medical University, 2023, 54(1): 114-118. | |
| [6] | 任凌丽, 李浩, 钱雪, 等. 新鲜艾叶与陈化艾叶挥发油化学成分研究 [J]. 中国野生植物资源, 2022, 41(11): 39-42, 55. |
| Ren LL, Li H, Qian X, et al. Study on chemical composition of volatile oil from fresh and aged Artemisia argyi leaves [J]. Chinese Wild Plant Resources, 2022, 41(11): 39-42, 55. | |
| [7] | 李玉萍, 魏莉霞, 张东佳, 等. 艾草的研究现状、应用与展望 [J]. 中国种业, 2024(8): 21-27. |
| Li YP, Wei LX, Zhang DJ, et al. Research status, applications and prospect of Artemisia argyi [J]. China Seed Ind, 2024(8): 21-27. | |
| [8] | 蒋小洁, 陈贻豪, 宋紫欣, 等. 艾草的药理作用及其机制研究进展 [J]. 华夏医学, 2023, 36(6): 182-188. |
| Jiang XJ, Chen YH, Song ZX, et al. Research progress in the pharmacology and mechanism of Artemisia argyi [J]. Acta Med Sin, 2023, 36(6): 182-188. | |
| [9] | Liu Y, He YN, Wang F, et al. From longevity grass to contemporary soft gold: Explore the chemical constituents, pharmacology, and toxicology of Artemisia argyi H.Lév. & vaniot essential oil [J]. J Ethnopharmacol, 2021, 279: 114404. |
| [10] | 兰晓燕, 张元, 朱龙波, 等. 艾叶化学成分、药理作用及质量研究进展 [J]. 中国中药杂志, 2020, 45(17): 4017-4030. |
| Lan XY, Zhang Y, Zhu LB, et al. Research progress on chemical constituents from Artemisiae argyi Folium and their pharmacological activities and quality control [J]. China J Chin Mater Med, 2020, 45(17): 4017-4030. | |
| [11] | 朱晔, 马蕊, 陈灵丽, 等. 艾的基原考证 [J].中医学报, 2024: 1-10. |
| Zhu Y, Ma R, Chen LL, et al. Textual research on traditional Chinese medicine Artemisia argyi [J]. Acta Chinese Medicine, 2024: 1-10. | |
| [12] | 庄二平, 郑真. 南阳市艾草产业发展分析 [J]. 农村经济与科技, 2022, 33(3): 147-149. |
| Zhuang EP, Zheng Z. Analysis on the development of wormwood industry in Nanyang city [J]. Rural Econ Sci Technol, 2022, 33(3): 147-149. | |
| [13] | 时敏, 王瑶, 周伟, 等. 药用植物萜类化合物的生物合成与代谢调控研究进展 [J]. 中国科学: 生命科学, 2018, 48(4): 352-364. |
| Shi M, Wang Y, Zhou W, et al. Research progress in terms of the biosynthesis and regulation of terpenoids from medicinal plants [J]. Sci Sin Vitae, 2018, 48(4): 352-364. | |
| [14] | 孙丽超, 李淑英, 王凤忠, 等. 萜类化合物的合成生物学研究进展 [J]. 生物技术通报, 2017, 33(1): 64-75. |
| Sun LC, Li SY, Wang FZ, et al. Research progresses in the synthetic biology of terpenoids [J]. Biotechnol Bull, 2017, 33(1): 64-75. | |
| [15] | 零唯, 覃艳红,黄鼎, 等. 绞股蓝萜类合成酶(TPS)基因家族鉴定及其在非生物胁迫下的表达分析 [J]. 中国中药杂志, 2023, 48(4): 930-938. |
| Ling W, Qin YH, Huang D, et al. Identification of terpene synthase gene family in Gynostemma pentaphyllum and expression pattern analysis under abiotic stresses [J]. China Journal of Chinese Materia Medica, 2023, 48(4): 930-938. | |
| [16] | Wolkoff P, Clausen PA, Wilkins CK, et al. Formation of strong airway irritants in terpene/ozone mixtures [J]. Indoor Air, 2000, 10(2): 82-91. |
| [17] | Wang X, Pereira JH, Tsutakawa S, et al. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450 [J]. Metab Eng, 2021, 64: 41-51. |
| [18] | 徐俊, 叶雨晴, 牛雅静, 等. 菊花根状茎发育的转录组分析 [J]. 生物技术通报, 2023, 39(10): 231-245. |
| Xu J, Ye YQ, Niu YJ, et al. Transcriptome analysis of rhizome development in Chrysanthemum morifolium [J]. Biotechnol Bull, 2023, 39(10): 231-245. | |
| [19] | Arick M 2nd, Hsu CY. Differential gene expression analysis of plants [J]. Methods Mol Biol, 2018, 1783: 279-298. |
| [20] | 刘慧敏, 张悦, 王佳艺, 等. 代谢组学前沿技术进展及在中药现代研究中的应用 [J]. 中草药, 2024, 55(3): 969-977. |
| Liu HM, Zhang Y, Wang JY, et al. Advances in frontier technologies in metabolomics and their application in modern research of Chinese medicine [J]. Chin Tradit Herb Drugs, 2024, 55(3): 969-977. | |
| [21] | 崔芙岩, 杨佳颖, 王志刚, 等. 代谢组学在中医药领域的应用与展望 [J]. 中草药, 2022, 53(14): 4512-4526. |
| Cui FY, Yang JY, Wang ZG, et al. Application and prospect of metabolomics in traditional Chinese medicine research [J]. Chin Tradit Herb Drugs, 2022, 53(14): 4512-4526. | |
| [22] | Fraga-Corral M, Carpena M, Garcia-Oliveira P, et al. Analytical metabolomics and applications in health, environmental and food science [J]. Crit Rev Anal Chem, 2022, 52(4): 712-734. |
| [23] | 梁婉凤, 曾菁菁, 胡若群, 等. 转录组与代谢组分析不同生长时期金线莲类胡萝卜素的积累 [J]. 生物技术通报, 2024, 40(10): 262-274. |
| Liang WF, Zeng JJ, Hu RQ, et al. Transcriptional and metabolomic analysis of carotenoid accumulation in Anoectochilus roxburghii during different growth periods [J]. Biotechnol Bull, 2024, 40(10): 262-274. | |
| [24] | 薛守宇, 朱涛, 李冰冰, 等. 转录组和代谢组联合分析在植物中的应用研究 [J]. 山西农业大学学报: 自然科学版, 2022, 42(3): 1-13. |
| Xue SY, Zhu T, Li BB, et al. Application research of combined transcriptome with metabolome in plants [J]. J Shanxi Agric Univ Nat Sci Ed, 2022, 42(3): 1-13. | |
| [25] | 张改君, 苗静, 郭丽颖, 等. 多组学联用在中药作用机制研究中的应用 [J]. 中草药, 2021, 52(10): 3112-3120. |
| Zhang GJ, Miao J, Guo LY, et al. Application of multi-omics combination in mechanism studies of traditional Chinese medicine [J]. Chinese Traditional and Herbal Drugs, 2021, 52(10): 3112-3120. | |
| [26] | Wang SS, Liu L, Mi XZ, et al. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight [J]. Plant J, 2021, 106(3): 862-875. |
| [27] | 罗元明, 杨福全. 多组学前沿技术专刊序言 [J]. 生物工程学报, 2022, 38(10): 3571-3580. |
| Luo YM, Yang FQ. Preface for special issue on multi-omics frontier technologies [J]. Chinese Journal of Biotechnology, 2022, 38(10): 3571-3580. | |
| [28] | 张利苹, 王俊玲, 李振华, 等. 花生红色种皮花青素生物合成转录-代谢组学联合分析 [J]. 植物遗传资源学报, 2024, 25(10): 1767-1780. |
| Zhang LP, Wang JL, Li ZH, et al. Transcriptomics-metabolomics combined analysis highlight the anthocyanin biosynthesis mechanism of red testa in peanut(Arachis hypogaea L.) [J]. Journal of Plant Genetic Resources, 2024, 25(10): 1767-1780. | |
| [29] | Chen HY, Guo MX, Dong ST, et al. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity [J]. Plant Commun, 2023, 4(3): 100516. |
| [30] | 奥斯伯FM, 马学军, 舒跃龙. 精编分子生物学实验指南 [M]. 北京: 科学出版社, 2005. |
| Ausubel FM, Ma XJ, Shu YL. Short protocols in molecular biology [M]. Beijing: Science Press, 2005. | |
| [31] | Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences [J]. Bioinformatics, 2005, 21(9): 1859-1875. |
| [32] | 董树廷. 基于代谢组和单细胞转录组的艾叶腺毛发育及倍半萜生物合成研究 [D]. 北京:北京协和医学院, 2024. |
| Dong ST. Analysis of glandular trichome development and sesquiterpene biosynthesis in Artemisia argyi based on metabolome and single-cell transcriptome [D]. Beijing: Peking Union Medical College, 2024. | |
| [33] | Lee S, Won HJ, Ban S, et al. Integrative analysis of metabolite and transcriptome reveals biosynthetic pathway and candidate genes for eupatilin and jaceosidin biosynthesis in Artemisia argyi [J]. Front Plant Sci, 2023, 14: 1186023. |
| [34] | Zhang KP, Wang NH, Gao XQ, et al. Integrated metabolite profiling and transcriptome analysis reveals tissue-specific regulation of terpenoid biosynthesis in Artemisia argyi [J]. Genomics, 2022, 114(4): 110388. |
| [1] | LIU Yu-shi, LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin. Advances in Spatial Metabolomics in Medicinal Plants [J]. Biotechnology Bulletin, 2025, 41(9): 22-31. |
| [2] | LIU Jian-guo, LIU Ge-er, GUO Ying-xin, WANG Bin, WANG Yu-kun, LU Jin-feng, HUANG Wen-ting, ZHU Yun-na. Integrate Transcriptomic and Metabolomic Analysis of Fruits Quality Differences between ‘Guiyou No. 1’ and ‘Shatianyou’ Pomelo (Citrus maxima) [J]. Biotechnology Bulletin, 2025, 41(9): 168-181. |
| [3] | LIU Ze-zhou, DUAN Nai-bin, YUE Li-xin, WANG Qing-hua, YAO Xing-hao, GAO Li-min, KONG Su-ping. Analysis of Wax Components and Screening of Wax-deficient Gene Ggl-1 in Garlic (Allium sativum L.) [J]. Biotechnology Bulletin, 2025, 41(9): 219-231. |
| [4] | YAN Meng-yang, LIANG Xiao-yang, DAI Jun-ang, ZHANG Yan, GUAN Tuan, ZHANG Hui, LIU Liang-bo, SUN Zhi-hua. Screening of Amoxicillin-degrading Bacteria and Study on Its Degradation Mechanisms [J]. Biotechnology Bulletin, 2025, 41(9): 314-325. |
| [5] | WANG Bin, LIN Chong, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui. Cloning of bHLH Transcription Factor UNE10 and Its Regulatory Roles in the Biosynthesis of Volatile Compounds in Clove Basil [J]. Biotechnology Bulletin, 2025, 41(9): 207-218. |
| [6] | CAI Ru-feng, YANG Yu-xuan, YU Ji-zheng, LI Jia-nan. Artificial Intelligence Transforms Protein Engineering: From Structural Analysis to Synthetic Biology through Algorithmic Advancements [J]. Biotechnology Bulletin, 2025, 41(8): 1-10. |
| [7] | BAI Yu-guo, LI Wan-di, LIANG Jian-ping, SHI Zhi-yong, LU Geng-long, LIU Hong-jun, NIU Jing-ping. Growth-promoting Mechanism of Trichoderma harzianum T9131 on Astragalus membranaceus Seedlings [J]. Biotechnology Bulletin, 2025, 41(8): 175-185. |
| [8] | WANG Yue-chen, HAN Xin-qi, WEI Wen-min, CUI Zhao-lan, LUO Yang-mei, CHEN Peng-ru, WANG Hai-gang, LIU long-long, ZHANG Li, WANG Lun. Biological Basis Study for Grain Shattering in Proso Millet and Identification of Genes Regulating Grain Shattering [J]. Biotechnology Bulletin, 2025, 41(7): 164-171. |
| [9] | ZHANG Yue, BI Yu, MU Xue-nan, ZHENG Zi-wei, WANG Zhi-gang, XU Wei-hui. Biocontrol Characteristics of Strain JB7 against Fusarium graminearum [J]. Biotechnology Bulletin, 2025, 41(7): 261-271. |
| [10] | GAO Jing, CHENG Yi-cun, GAO Ming, ZHAO Yun-xiao, WANG Yang-dong. Regulation of Plant Tannin Synthesis and Mechanisms of Its Responses to Environment [J]. Biotechnology Bulletin, 2025, 41(7): 49-59. |
| [11] | LI Cheng-hua, DOU Fei-fei, REN Yu-zhao, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Effect of Exogenous Salicylic Acid on Wheat Infested with Blumeria graminis f. sp. tritici and Its Transcriptome Analysis [J]. Biotechnology Bulletin, 2025, 41(7): 272-280. |
| [12] | GUO Xiu-juan, FENG Yu, WU Rui-xiang, WANG Li-qin, YANG Jian-chun. Transcriptome Analysis of the Effect of Ca 2+ Treatment on the Seed Germination of Flax [J]. Biotechnology Bulletin, 2025, 41(7): 139-149. |
| [13] | HUANG Xu-sheng, ZHOU Ya-li, CHAI Xu-dong, WEN Jing, WANG Ji-ping, JIA Xiao-yun, LI Run-zhi. Cloning of Plastidial PfLPAT1B Gene from Perilla frutescens and Its Functional Analysis in Oil Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(7): 226-236. |
| [14] | HU Ruo-qun, ZENG Jing-jing, LIANG Wan-feng, CAO Jia-yu, HUANG Xiao-wei, LIANG Xiao-ying, QIU Ming-yue, CHEN Ying. Integrated Transcriptome and Metabolome Analysis to Explore the Carotenoid Synthesis and Metabolism Mechanism in Anoectochilus roxburghii under Different Shading Conditions [J]. Biotechnology Bulletin, 2025, 41(5): 231-243. |
| [15] | WU Ya, YAO Run, YANG Han-ting, LIU Wei, YANG Shuai, SONG Chi, CHEN Shi-lin. Genome-wide Identification and Expression Analysis of SDR Gene Family in Mentha suaveolens ‘Variegata’ [J]. Biotechnology Bulletin, 2025, 41(5): 175-185. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||