Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 210-220.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0542
JIAO Xiao-yu(
), WU Qiong, LIU Dan-dan, SUN Ming-hui, RUAN Xu, WANG Lei-gang, WANG Wen-jie(
)
Received:2024-06-07
Online:2025-02-26
Published:2025-02-28
Contact:
WANG Wen-jie
E-mail:670618026@qq.com;391590137@qq.com
JIAO Xiao-yu, WU Qiong, LIU Dan-dan, SUN Ming-hui, RUAN Xu, WANG Lei-gang, WANG Wen-jie. Cloning and Functional Analysis of CsWAK8 Gene from Camellia sinensis during Cold Stress[J]. Biotechnology Bulletin, 2025, 41(2): 210-220.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
|---|---|---|
| CsWAK8-F | ATGGCTTTCTCGCATGGAATGCAAT | CsWAK8 CDS 扩增 CsWAK8 CDS amplification |
| CsWAK8-R | TCACCTCCCACCATCCATTGGCAAA | |
| CsWAK8-qF | AATGGAATTGGAGGGGTTGAT | CsWAK8 qPCR分析 CsWAK8 qPCR analysis |
| CsWAK8-qR | ACATGTTCCCTCACACTATCATATC | |
| β-actin-qF | GCCATCTTTGATTGGAATGG | 茶树内参基因qPCR分析 qPCR analysis of reference genes in C. sinensis |
| β-actin-qR | GGTGCCACAACCTTGATCTT | |
| CsWAK8-3301-F | TATGACCATGATTACGAATTCATGGCTTTCTCGCATGGAATGCAAT | pCAMBIA3301-CsWAK8载体构建 pCAMBIA3301-CsWAK8 vector construction |
| CsWAK8-3301-R | CAGGTCGACTCTAGAGGATCCTCACCTCCCACCATCCATTGGCAAA | |
| 3301-35S pro-R | TGTTCTCTCCAAATG AAATGAACTTCCTT | 转基因拟南芥分子鉴定 Molecular identification of transgenic A. thaliana |
| AtCBF1-qF | GCCACGAGTTGTCCGAAGAA | AtCBF1 qPCR分析 AtCBF1 qPCR analysis |
| AtCBF1-qR | AAGCCGAGTCAGCGAAGTTG | |
| AtCBF2-qF | ATTTCGCTGACTCGGCTTGG | AtCBF2 qPCR分析 AtCBF2 qPCR analysis |
| AtCBF2-qR | ACGCATCTTGGCTCTGTTCC | |
| AtCBF3-qF | GCCGATCAGCCTGTCTCAAT | AtCBF3 qPCR分析 AtCBF3 qPCR analysis |
| AtCBF3-qR | GCTCTGTTCCGCCGTGTAA | |
| AtUBQ10-qF | AGTCCACCCTTCATCTTGTTCTC | 拟南芥内参基因qPCR分析 qPCR analysis of reference genes in A. thaliana |
| AtUBQ10-qR | GTCAGCCAAAGTTCTTCCATCT |
Table 1 The primers used in this study
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 引物用途 Primer usage |
|---|---|---|
| CsWAK8-F | ATGGCTTTCTCGCATGGAATGCAAT | CsWAK8 CDS 扩增 CsWAK8 CDS amplification |
| CsWAK8-R | TCACCTCCCACCATCCATTGGCAAA | |
| CsWAK8-qF | AATGGAATTGGAGGGGTTGAT | CsWAK8 qPCR分析 CsWAK8 qPCR analysis |
| CsWAK8-qR | ACATGTTCCCTCACACTATCATATC | |
| β-actin-qF | GCCATCTTTGATTGGAATGG | 茶树内参基因qPCR分析 qPCR analysis of reference genes in C. sinensis |
| β-actin-qR | GGTGCCACAACCTTGATCTT | |
| CsWAK8-3301-F | TATGACCATGATTACGAATTCATGGCTTTCTCGCATGGAATGCAAT | pCAMBIA3301-CsWAK8载体构建 pCAMBIA3301-CsWAK8 vector construction |
| CsWAK8-3301-R | CAGGTCGACTCTAGAGGATCCTCACCTCCCACCATCCATTGGCAAA | |
| 3301-35S pro-R | TGTTCTCTCCAAATG AAATGAACTTCCTT | 转基因拟南芥分子鉴定 Molecular identification of transgenic A. thaliana |
| AtCBF1-qF | GCCACGAGTTGTCCGAAGAA | AtCBF1 qPCR分析 AtCBF1 qPCR analysis |
| AtCBF1-qR | AAGCCGAGTCAGCGAAGTTG | |
| AtCBF2-qF | ATTTCGCTGACTCGGCTTGG | AtCBF2 qPCR分析 AtCBF2 qPCR analysis |
| AtCBF2-qR | ACGCATCTTGGCTCTGTTCC | |
| AtCBF3-qF | GCCGATCAGCCTGTCTCAAT | AtCBF3 qPCR分析 AtCBF3 qPCR analysis |
| AtCBF3-qR | GCTCTGTTCCGCCGTGTAA | |
| AtUBQ10-qF | AGTCCACCCTTCATCTTGTTCTC | 拟南芥内参基因qPCR分析 qPCR analysis of reference genes in A. thaliana |
| AtUBQ10-qR | GTCAGCCAAAGTTCTTCCATCT |
Fig. 2 Protein structure analysis of CsWAK8 in C. sinensisA: Domain architecture analysis of CsWAK8 proteins. B: Prediction of transmembrane structure in CsWAK8 proteins. C: Prediction of secondary structures in CsWAK8 proteins
Fig. 3 Expressions of CsWAK8 in different tissues of C. sinensis and different cold-resistant varieties (lines) of C. sinensisA: Phenotypes of different tea tree varieties under cold damage, SXPX1, SXPX2, SXPX4, SXPX5, SXPX10 and SXPX11 are different C. sinensis varieties in the Shexian experimental zone. B: Expressions of CsWAK8 in different tissues of C. sinensis. C: Expressions of CsWAK8 in the leaves of tea tree varieties (lines) with varied cold damage symptoms. D: Expressions of CsWAK8 in the roots of tea tree varieties with varied cold damage symptoms. Different lowercase letters indicate significant difference (P<0.05). The same below
Fig. 4 GUS staining and molecular identification of wild-type and transgenic A. thalianaA: PCR detection of transgenic A. thaliana; M: DL 5000 DNA marker; +: pCAMBIA3301-CsWAK8 plasmid; WT: wild-type A. thaliana. L0-L48: pCAMBIA3301-CsWAK8 transgenic A.thaliana. B: The GUS staining of transgenic A.thaliana seedling; C: qPCR detection of transgenic A.thaliana. N.D.: Not detected
Fig. 5 Phenotypic analysis of wild-type and transgenic A. thaliana under low-temperature stressA, B: Phenotypes and root lengths of wild-type and transgenic A. thaliana seedlings under (4±1)℃ treatment. C, D: Phenotypes and survival rate of wild-type and transgenic A. thaliana seedlings after recovery from (-8±1)℃ treatment. E: Phenotypes of 30-day-old pot-grown wild-type and transgenic A. thaliana after recovery from low-temperature treatment
| 1 | 杨书运. 茶树冻害防控方法的研究 [D]. 合肥: 安徽农业大学, 2012. |
| Yang SY. Study on prevention and control methods of freezing injury of tea trees [D]. Hefei: Anhui Agricultural University, 2012. | |
| 2 | Anderson CM, Wagner TA, Perret M, et al. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix [J]. Plant Mol Biol, 2001, 47(1/2): 197-206. |
| 3 | He ZH, Cheeseman I, He D, et al. A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis [J]. Plant Mol Biol, 1999, 39(6): 1189-1196. |
| 4 | Verica JA, He ZH. The cell wall-associated kinase (WAK) and WAK-like kinase gene family [J]. Plant Physiol, 2002, 129(2): 455-459. |
| 5 | de Oliveira LFV, Christoff AP, de Lima JC, et al. The Wall-associated Kinase gene family in rice genomes [J]. Plant Sci, 2014, 229: 181-192. |
| 6 | Zhang ZQ, Ma WY, Ren ZY, et al. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton [J]. Int J Biol Macromol, 2021, 187: 867-879. |
| 7 | 焦小雨, 吴琼, 刘丹丹, 等. 茶树细胞壁关联蛋白激酶基因家族的鉴定与表达分析 [J]. 农业生物技术学报, 2023, 31(9): 1816-1831. |
| Jiao XY, Wu Q, Liu DD, et al. Identification and expression analysis of the wall-associated kinase gene family in Camellia sinensis [J]. J Agric Biotechnol, 2023, 31(9): 1816-1831. | |
| 8 | Lally D, Ingmire P, Tong HY, et al. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology [J]. Plant Cell, 2001, 13(6): 1317-1331. |
| 9 | Kanneganti V, Gupta AK. RNAi mediated silencing of a wall associated kinase, OsiWAK1 in Oryza sativa results in impaired root development and sterility due to anther indehiscence: wall associated kinases from Oryza sativa [J]. Physiol Mol Biol Plants, 2011, 17(1): 65-77. |
| 10 | Brutus A, Sicilia F, Macone A, et al. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides [J]. Proc Natl Acad Sci USA, 2010, 107(20): 9452-9457. |
| 11 | Diener AC, Ausubel FM. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific [J]. Genetics, 2005, 171(1): 305-321. |
| 12 | Yang J, Xie MX, Wang XF, et al. Identification of cell wall-associated kinases as important regulators involved in Gossypium hirsutum resistance to Verticillium dahliae [J]. BMC Plant Biol, 2021, 21(1): 220. |
| 13 | Li H, Zhou SY, Zhao WS, et al. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance [J]. Plant Mol Biol, 2009, 69(3): 337-346. |
| 14 | Harkenrider M, Sharma R, De Vleesschauwer D, et al. Overexpression of rice wall-associated kinase 25 (OsWAK25) alters resistance to bacterial and fungal pathogens [J]. PLoS One, 2016, 11(1): e0147310. |
| 15 | Saintenac C, Lee WS, Cambon F, et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici [J]. Nat Genet, 2018, 50(3): 368-374. |
| 16 | Dmochowska-Boguta M, Kloc Y, Zielezinski A, et al. TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance [J]. PLoS One, 2020, 15(1): e0227713. |
| 17 | Qi HJ, Zhu XL, Guo FL, et al. The wall-associated receptor-like kinase TaWAK7D is required for defense responses to Rhizoctonia cerealis in wheat [J]. Int J Mol Sci, 2021, 22(11): 5629. |
| 18 | Sivaguru M, Ezaki B, He ZH, et al. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis [J]. Plant Physiol, 2003, 132(4): 2256-2266. |
| 19 | Hou XW, Yin XY. Role of OsWAK124, a rice wall-associated kinase, in response to environmental heavy metal stresses [J]. Pak J Bot, 2017, 49(4): 1255-1261. |
| 20 | Wang H, Niu HH, Liang MM, et al. A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes [J]. Front Plant Sci, 2019, 10: 591. |
| 21 | Lin W, Wang YH, Liu XY, et al. OsWAK112, A wall-associated kinase, negatively regulates salt stress responses by inhibiting ethylene production [J]. Front Plant Sci, 2021, 12: 751965. |
| 22 | Yang TB, Chaudhuri S, Yang LH, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants [J]. J Biol Chem, 2010, 285(10): 7119-7126. |
| 23 | Yang TB, Shad Ali G, Yang LH, et al. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants [J]. Plant Signal Behav, 2010, 5(8): 991-994. |
| 24 | Xia EH, Zhang HB, Sheng J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Mol Plant, 2017, 10(6): 866-877. |
| 25 | Fang LC, Wang ZM, Su LY, et al. Vitis Myb14 confer cold and drought tolerance by activating lipid transfer protein genes expression and reactive oxygen species scavenge [J]. Gene, 2024, 890: 147792. |
| 26 | 陈思琪, 孙敬爽, 麻文俊, 等. 植物低温胁迫调控机制研究进展 [J]. 中国农学通报, 2022, 38(17): 51-61. |
| Chen SQ, Sun JS, Ma WJ, et al. Regulation mechanism of low temperature stress on plants: research progress [J]. Chin Agric Sci Bull, 2022, 38(17): 51-61. | |
| 27 | 张杰, 孙叶烁, 薛一花, 等. 贮藏温度对白菜叶片SOD、POD活性及MDA含量的影响 [J]. 西北农林科技大学学报: 自然科学版, 2019, 47(10): 113-119. |
| Zhang J, Sun YS, Xue YH, et al. Effects of storage temperature on SOD and POD activities and MDA contents in Chinese cabbage leaves [J]. J Northwest A F Univ Nat Sci Ed, 2019, 47(10): 113-119. | |
| 28 | 侯梦娟, 朱新霞, 孔辉, 等. GhCDPK4基因的克隆和功能分析 [J]. 西北农业学报, 2022, 31(2): 217-223. |
| Hou MJ, Zhu XX, Kong H, et al. Cloning and functional analysis of GhCDPK4 gene [J]. Acta Agric Boreali Occidentalis Sin, 2022, 31(2): 217-223. | |
| 29 | 王建格, 周婵, 刘译朗, 等. 香樟CcCBFc基因抗寒功能验证及分析 [J]. 农业生物技术学报, 2021, 29(2): 268-278. |
| Wang JG, Zhou C, Liu YL, et al. Verification and analysis of cold resistance of CcCBFc gene from Cinnamomum camphora [J]. J Agric Biotechnol, 2021, 29(2): 268-278. | |
| 30 | 王楠楠. 梅花花朵抗寒性评价及响应低温胁迫关键WRKY基因筛选 [D]. 杭州: 浙江农林大学, 2021. |
| Wang NN. Evaluation of cold resistance of plum blossoms and screening of key WRKY genes in response to low temperature stress [D]. Hangzhou: Zhejiang A & F University, 2021. | |
| 31 | 罗军武, 唐和平, 黄意欢, 等. 茶树不同抗寒性品种间保护酶类活性的差异 [J]. 湖南农业大学学报: 自然科学版, 2001, 27(2): 94-96. |
| Luo JW, Tang HP, Huang YH, et al. Differences of activities of protective enzymes of tea plant varieties with different cold resistant abilities [J]. J Hunan Agric Univ, 2001, 27(2): 94-96. | |
| 32 | Liu JY, Shi YT, Yang SH. Insights into the regulation of C-repeat binding factors in plant cold signaling [J]. J Integr Plant Biol, 2018, 60(9): 780-795. |
| 33 | Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities [J]. Plant Mol Biol, 2004, 54(5): 767-781. |
| 34 | Liu YK, Dang PY, Liu LX, et al. Cold acclimation by the CBF-COR pathway in a changing climate: lessons from Arabidopsis thaliana [J]. Plant Cell Rep, 2019, 38(5): 511-519. |
| 35 | Dong MA, Farré EM, Thomashow MF. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis [J]. Proc Natl Acad Sci USA, 2011, 108(17): 7241-7246. |
| [1] | XU Yuan-meng, MAO Jiao, WANG Meng-yao, WANG Shu, REN Jiang-ling, LIU Yu-han, LIU Si-chen, QIAO Zhi-jun, WANG Rui-yun, CAO Xiao-ning. Cloning and Expression Characteristics Analysis of Millet Genes PmDEP1 and PmEP3 [J]. Biotechnology Bulletin, 2025, 41(2): 150-162. |
| [2] | QIAO Yan, YANG Fang, REN Pan-rong, QI Wei-liang, AN Pei-pei, LI Qian, LI Dan, XIAO Jun-fei. Cloning and Function Analysis of the ScDHNS Gene of Crotonase/Enoyl-CoA Superfamily from a Wild Potato Species [J]. Biotechnology Bulletin, 2024, 40(9): 92-103. |
| [3] | SHEN Zhen-hui, CAO Yao, YANG Lin-lei, LUO Xiang-ying, ZI Ling-shan, LU Qing-qing, LI Rong-chun. Cloning and Bioinformatics Analysis of the Ergothioneine Biosynthesis Genes in Naematelia aurantialba and Stereum hirsutum [J]. Biotechnology Bulletin, 2024, 40(7): 259-272. |
| [4] | HUANG Dan, JIANG Shan, PENG Tao. Cloning of FfCYP98 Gene and Its Functional Analysis in Folioceros fuciformis [J]. Biotechnology Bulletin, 2024, 40(7): 273-284. |
| [5] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
| [6] | REN Xiao-min, YUN Lan, AI Qian, ZHAO Qiao. Functional Verification of Isopentenyl Transferases PjIPT Gene in Psathyrostachys juncea [J]. Biotechnology Bulletin, 2024, 40(7): 207-215. |
| [7] | WANG Yu-shu, ZHAO Lin-lin, ZHAO Shuang, HU Qi, BAI Hui-xia, WANG Huan, CAO Ye-ping, FAN Zhen-yu. Cloning and Expression Analysis of BrCYP83B1 Gene in Chinese Cabbage [J]. Biotechnology Bulletin, 2024, 40(6): 152-160. |
| [8] | HAO Si-yi, ZHANG Jun-ke, WANG Bin, QU Peng-yan, LI Rui-de, CHENG Chun-zhen. Cloning and Expression Analysis of Banana EARLY FLOWERING 3(ELF3)Genes [J]. Biotechnology Bulletin, 2024, 40(5): 131-140. |
| [9] | DU Ze-guang, REN Shao-wen, ZHANG Feng-qin, LI Mei-lan, LI Gai-zhen, QI Xian-hui. Cloning,Expression and Functional Identification of BrMLP328 Gene in Brassica rapa subsp. pekinensis [J]. Biotechnology Bulletin, 2024, 40(4): 122-129. |
| [10] | LIU Huan-huan, YANG Li-chun, LI Huo-gen. Cloning and Functional Analysis of LtMYB305 in Liriodendron tulipifera [J]. Biotechnology Bulletin, 2024, 40(4): 179-188. |
| [11] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
| [12] | YANG Wei-cheng, SUN Yan, YANG Qian, WANG Zhuang-lin, MA Ju-hua, XUE Jin-ai, LI Run-zhi. Genome-wide Identification of the FAX family in Gossypium hirsutum and Functional Analysis of GhFAX1 [J]. Biotechnology Bulletin, 2024, 40(3): 155-169. |
| [13] | YANG Yan, HU Yang, LIU Ni-ru, YIN Lu, YANG Rui, WANG Peng-fei, MU Xiao-peng, ZHANG Shuai, CHENG Chun-zhen, ZHANG Jian-cheng. Cloning and Functional Analysis of MbbZIP43 Gene in ‘Hongmantang’ Red-flesh Apple [J]. Biotechnology Bulletin, 2024, 40(2): 146-159. |
| [14] | HUA Xuan, TIAN Bo-wen, ZHOU Xin-tong, JIANG Zi-han, WANG Shi-qi, HUANG Qian-hui, ZHANG Jian, CHEN Yan-hong. Cloning SmERF B3-45 from Salix matsudana and Functional Analysis on Its Tolerance to Salt [J]. Biotechnology Bulletin, 2024, 40(12): 124-135. |
| [15] | KONG Lan, YE Xiu-xian, LIN Rong-yan, LIN Bing, ZHONG Huai-qin. Cloning and Expression Analysis of DkTPS7 in Dendrobium kingianum [J]. Biotechnology Bulletin, 2024, 40(12): 160-169. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||