Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (2): 309-320.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0544
LI Ming1,2,3(
), LIU Xiang-yu1,2,3, WANG Yi-na1,2,3, HE Si-mei1,2,3,4, SHA Ben-cai2,3,4(
)
Received:2024-06-07
Online:2025-02-26
Published:2025-02-28
Contact:
SHA Ben-cai
E-mail:3049730657@qq.com;ynshbc@aliyun.com
LI Ming, LIU Xiang-yu, WANG Yi-na, HE Si-mei, SHA Ben-cai. Cloning and Functional Characterization of 6-OMT Gene Related to Isocorydine Biosynthesis in Dactylicapnos scandens[J]. Biotechnology Bulletin, 2025, 41(2): 309-320.
Fig. 1 Structure of tissue samples and compounds of D. scandensA-C refers to the roots, stems and leaves of D. scandens, respectively. D and E are the structure and position numbers of isovioladinine and (S)-norcoclaurine, respectively
项目列表 Analysis item | 网址 Website |
|---|---|
| NCBI同源基因比对分析 | https://blast.ncbi.nlm.nih.gov/Blast.cgi |
| 蛋白理化性质分析 | https://web.expasy.org/protparam/ |
| 蛋白信号肽预测 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ |
| 蛋白跨膜结构域预测 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| 蛋白二级结构预测 | https://npsa-prabi.ibcp.fr/cgi-bin/npsa |
| 蛋白三级结构预测 | https://swissmodel.expasy.org/ |
| 蛋白保守基序分析 | https://meme-suite.org/meme/ |
| 蛋白保守结构域分析 | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi |
| 蛋白亚细胞定位 | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| 多序列比对 | https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi |
Table 1 Website links on bioinformatics analysis
项目列表 Analysis item | 网址 Website |
|---|---|
| NCBI同源基因比对分析 | https://blast.ncbi.nlm.nih.gov/Blast.cgi |
| 蛋白理化性质分析 | https://web.expasy.org/protparam/ |
| 蛋白信号肽预测 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ |
| 蛋白跨膜结构域预测 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| 蛋白二级结构预测 | https://npsa-prabi.ibcp.fr/cgi-bin/npsa |
| 蛋白三级结构预测 | https://swissmodel.expasy.org/ |
| 蛋白保守基序分析 | https://meme-suite.org/meme/ |
| 蛋白保守结构域分析 | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi |
| 蛋白亚细胞定位 | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| 多序列比对 | https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi |
基因 Gene | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Reverse primer sequence (5′-3′) |
|---|---|---|
| DsOMT08 | cagcaaatgggtcgcggatccATGGAAGTGAAGAAGAGTGAAC | gacggagctcgaattcggatccTTAATATGGATAAACCTCAATAACAG |
| DsOMT07 | cagcaaatgggtcgcggatccATGGAGATGATCATCAATGAAG | acggagctcgaattcggatccCTAAGGATATGCAACAATAACTG |
| DsOMT010 | cagcaaatgggtcgcggatccATGGGTGTCAGTGATATAGCTG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
| DsOMT012 | cagcaaatgggtcgcggatccATGGGTGCCAATGAGATAGCAG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
| PCR-pET-28a | taatacgactcactataggggaatt | aaacgggtcttgaggggttttttg |
Table 2 PCR primer sequences
基因 Gene | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Reverse primer sequence (5′-3′) |
|---|---|---|
| DsOMT08 | cagcaaatgggtcgcggatccATGGAAGTGAAGAAGAGTGAAC | gacggagctcgaattcggatccTTAATATGGATAAACCTCAATAACAG |
| DsOMT07 | cagcaaatgggtcgcggatccATGGAGATGATCATCAATGAAG | acggagctcgaattcggatccCTAAGGATATGCAACAATAACTG |
| DsOMT010 | cagcaaatgggtcgcggatccATGGGTGTCAGTGATATAGCTG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
| DsOMT012 | cagcaaatgggtcgcggatccATGGGTGCCAATGAGATAGCAG | acggagctcgaattcggatccCTATGGGAAGGCTTCAATGACAG |
| PCR-pET-28a | taatacgactcactataggggaatt | aaacgggtcttgaggggttttttg |
Fig. 2 Candidate gene heat map of D. scandens, phylogenetic tree and conserved motif analysis of methyltransferase genes in other plantsA: Analysis of MT family phylogenetic tree. B: Expression heat map of candidate genes in different tissues of D. scandens. C: Phylogenetic tree (pre) and conserved motif (post) analysis of candidate genes and OMT genes of other species
基因 Gene | 氨基酸数目 Amino acid number | 分子量 Molecular weight/Da | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Fat coefficient | 亲水系数 Hydrophilicity coefficient | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|
| DsOMT07 | 356 | 39 577.72 | 4.95 | 28.65 | 105.96 | 0.024 | 叶绿体 |
| DsOMT08 | 353 | 39 349.51 | 5.61 | 33.31 | 93.34 | -0.150 | 叶绿体 |
| DsOMT010 | 349 | 38 582.51 | 5.23 | 36.41 | 102.23 | 0.034 | 叶绿体 |
| DsOMT012 | 348 | 38 346.22 | 5.47 | 38.58 | 102.53 | 0.025 | 叶绿体 |
Table 3 Prediction and statistics of physicochemical properties of DsOMT protein
基因 Gene | 氨基酸数目 Amino acid number | 分子量 Molecular weight/Da | 理论等电点 Theoretical pI | 不稳定系数 Instability index | 脂肪系数 Fat coefficient | 亲水系数 Hydrophilicity coefficient | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|---|
| DsOMT07 | 356 | 39 577.72 | 4.95 | 28.65 | 105.96 | 0.024 | 叶绿体 |
| DsOMT08 | 353 | 39 349.51 | 5.61 | 33.31 | 93.34 | -0.150 | 叶绿体 |
| DsOMT010 | 349 | 38 582.51 | 5.23 | 36.41 | 102.23 | 0.034 | 叶绿体 |
| DsOMT012 | 348 | 38 346.22 | 5.47 | 38.58 | 102.53 | 0.025 | 叶绿体 |
Fig. 4 Transmembrane structural domains of four screened DsOMT proteins (top) and signaling peptide prediction (bottom)A-D are the predicted transmembrane structural domains (top) and signaling peptides (bottom) of DsOMT07, DsOMT08, DsOMT010, and DsOMT012 proteins
Fig. 5 Secondary structure prediction of four DsOMT proteinsA-D are the predicted secondary structures of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins in order. E: Secondary structure prediction statistics of four DsOMT proteins
Fig. 6 Prediction of the tertiary structure of four DsOMT proteinsA-D predicted tertiary structure of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins in order; blue: spiral; green: extension chain; silver-white: irregular curl
Fig. 7 Extraction of total RNA from D. scandens and cloning of DsOMT geneA: Total RNA electrophoresis gel diagram of each tissue of D. scandens, lane 1-3 are total RNA electrophoresis gel diagram of root, stem and leaf tissues of D. scandens, respectively. B: Clone 4 candidate DsOMT gene electrophoresis gels, lane 4-7are cloned for DsOMT07, DsOMT08, DsOMT010 and DsOMT012 genes, respectively. Lane M: DNA marker 5 000 electrophoresis band
Fig. 8 Single enzyme digestion of pET-28a vector and verification of DsOMT recombinant pET-28aA: Gel diagram of single-digested pET-28a linear vector, lane 1 is the undigested pET-28a vector, and lane 2 and 3 are the digested pET-28a vector. B: Electrophoresis gel diagram of pET-28a-DsOMT(+) vector with positive bacterial water test, and pET-28a-DsOMT 07(+), pET-28a-DsOMT 08(+), pET-28a-DsOMT 010(+) and pET-28a-DsOMT 012(+) in lane 4-5, 6-7, 8-9 and 10-11, respectively. Lane M is the DNA marker 5 000 electrophoresis band
Fig. 9 Purification of DsOMT proteinA-D are electropherograms of 250 mmol/L imidazole purification of DsOMT07, DsOMT08, DsOMT010 and DsOMT012 proteins, respectively. Lane 1-3 in A-D are duplicate protein sample bands, lane M in panel A, C, and D is protein marker 150, and lane M in panel B is protein marker 310
Fig. 10 Protein enzymatic reaction in vitro and LC-MS detectionA: Catalytic steps of DsOMT010 in vitro enzymatic reaction. B: TIC diagram of LC-MS detection and analysis. C: LC-MS detection of (S)-coclaurine standard EIC mass spectrometry. D: LC-MS detection of DsOMT010+(S)-norcoclaurine product EIC mass spectrometry
| 1 | 中国科学院中国植物志编辑委员会. 中国植物志-第32卷[M]. 北京: 科学出版社, 1999. |
| Editorial Committee of Flora of China Chinese Academy of Sciences. Flora of China (Vol. 32) [M]. Beijing: Science Press, 1999. | |
| 2 | 罗建蓉, 钱金栿, 周浓. 紫金龙脂溶性化学成分的研究 [J]. 西北药学杂志, 2010, 25(1): 19-20. |
| Luo JR, Qian JF, Zhou N. Analysis of the hydrophobic components in Dactylicapnos scandens by GC-MS [J]. Northwest Pharm J, 2010, 25(1): 19-20. | |
| 3 | 张伟, 丁宏莉, 张斌. RP-HPLC法同时测定紫金龙中2种生物碱的含量 [J]. 云南中医学院学报, 2009, 32(6): 18-19, 47. |
| Zhang W, Ding HL, Zhang B. Simultaneous RP-HPLC determination of two alkaloids in root of Dactylicapnos scandens [J]. J Yunnan Univ Tradit Chin Med, 2009, 32(6): 18-19, 47. | |
| 4 | 吴勐, 王银叶, 艾铁民. 紫金龙总生物碱的镇痛作用及其机制初探 [J]. 中草药, 2003, 34(11): 1022-1025. |
| Wu M, Wang YY, Ai TM. Studies of analgesic effect and mechanism of total alkaloid extracted from Dactylicapnos scandens [J]. Chin Tradit Herb Drugs, 2003, 34(11): 1022-1025. | |
| 5 | Guo CC, Jiang Y, Li L, et al. Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, tissue distribution and excretion studies of Dactylicapnos scandens in rats [J]. J Pharm Biomed Anal, 2013, 74: 92-100. |
| 6 | Wang X, Dong HJ, Yang B, et al. Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column [J]. J Chromatogr B, 2011, 879(31): 3767-3770. |
| 7 | 王富华, 胡晓, 陈海林, 等. 紫金龙的生物碱类成分 [J]. 中国中药杂志, 2009, 34(16): 2057-2059. |
| Wang FH, Hu X, Chen HL, et al. Alkaloids from Dactylicapnos scandens hutch [J]. China J Chin Mater Med, 2009, 34(16): 2057-2059. | |
| 8 | 张文鑫, 韩丽妹, 周毅生, 等. RP-HPLC同时测定紫金龙中4种异喹啉生物碱的含量 [J]. 中国药学杂志, 2009, 44(3): 233-236. |
| Zhang WX, Han LM, Zhou YS, et al. Simultaneous determination of four isoquinoline alkaloids in root of Dactylicapnos scandens by RP-HPLC [J]. Chin Pharm J, 2009, 44(3): 233-236. | |
| 9 | 刘金凤, 黄鹏, 卿志星, 等. 苄基异喹啉类生物碱生物合成与代谢工程研究进展 [J]. 基因组学与应用生物学, 2016, 35(8): 2194-2200. |
| Liu JF, Huang P, Qing ZX, et al. Advances in the biosynthesis and metabolic engineering research of benzylisoquinoline alkaloids [J]. Genom Appl Biol, 2016, 35(8): 2194-2200. | |
| 10 | Jiang B, Gao L, Wang HJ, et al. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III [J]. Science, 2024, 383(6683): 622-629. |
| 11 | Zhou C, Chen TJ, Gu AD, et al. Combining protein and metabolic engineering to achieve green biosynthesis of 12β-O-Glc-PPD in Saccharomyces cerevisiae [J]. Green Chem, 2023, 25(4): 1356-1367. |
| 12 | Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
| 13 | 辛爱一, 柳军玺, 邸多隆. 阿朴菲类生物碱研究进展 [J]. 中草药, 2018, 49(3): 712-724. |
| Xin AY, Liu JX, Di DL. Research progress on aporphine alkaloids [J]. Chin Tradit Herb Drugs, 2018, 49(3): 712-724. | |
| 14 | Han JN, Li SJ. De novo biosynthesis of berberine and halogenated benzylisoquinoline alkaloids in Saccharomyces cerevisiae [J]. Commun Chem, 2023, 6(1): 27. |
| 15 | Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells [J]. J Biol Chem, 2008, 283(14): 8810-8821. |
| 16 | Leng L, Xu ZC, Hong BX, et al. Cepharanthine analogs mining and genomes of Stephania accelerate anti-coronavirus drug discovery [J]. Nat Commun, 2024, 15(1): 1537. |
| 17 | Zhang LB, Zhang SQ, Liao LJ, et al. Discovery, structure, and mechanism of the (R, S)-norcoclaurine synthase for the chiral synthesis of benzylisoquinoline alkaloids [J]. ACS Catal, 2023, 13(22): 15164-15174. |
| 18 | Farrow SC, Hagel JM, Beaudoin GAW, et al. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy [J]. Nat Chem Biol, 2015, 11(9): 728-732. |
| 19 | Yang Y, Yuan JS, Ross J, et al. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid [J]. Arch Biochem Biophys, 2006, 448(1/2): 123-132. |
| 20 | 王志刚, 吴建新. DNA甲基转移酶分类、功能及其研究进展 [J]. 遗传, 2009, 31(9): 903-912. |
| Wang ZG, Wu JX. DNA methyltransferases: classification, functions and research progress [J]. Hereditas, 2009, 31(9): 903-912. | |
| 21 | Schmidberger JW, James AB, Edwards R, et al. Halomethane biosynthesis: Structure of a SAM-dependent halide methyltransferase from Arabidopsis thaliana [J]. Angew Chem Int Edit. 2010, 49(21): 3646-3648. |
| 22 | Lin Z, Hu ZW, Zhou LJ, et al. A large conserved family of small-molecule carboxyl methyltransferases identified from microorganisms [J]. Proc Natl Acad Sci U S A, 2023, 120(20): e2301389120. |
| 23 | Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): Biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors [J]. Pharmacol Rev, 1999, 51(4): 593-628. |
| 24 | Stanevich V, Jiang L, Satyshur KA, et al. The structural basis for tight control of PP2A methylation and function by LCMT-1 [J]. Mol Cell, 2011, 41(3): 331-342. |
| 25 | Li BZ, Yuan YJ, Jia B. Prospects of synthetic biology [J]. Sci Sin Chim, 2014, 44(9): 1455-1460. |
| 26 | Dang TTT, Facchini PJ. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy [J]. Plant Physiol, 2012, 159(2): 618-631. |
| 27 | Chang LM, Hagel JM, Facchini PJ. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum [J]. Plant Physiol, 2015, 169(2): 1127-1140. |
| 28 | Bu JL, Zhang XH, Li QS, et al. Catalytic promiscuity of O-methyltransferases from Corydalis yanhusuo leading to the structural diversity of benzylisoquinoline alkaloids [J]. Hortic Res, 2022, 9: uhac152. |
| 29 | Menéndez-Perdomo IM, Facchini PJ. Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera) [J]. J Biol Chem, 2020, 295(6): 1598-1612. |
| 30 | Chang JJ, Guo YL, Yan JY, et al. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance [J]. Hortic Res, 2021, 8: 210. |
| 31 | Jin JQ, Qu FR, Huang HS, et al. Characterization of two O-methyltransferases involved in the biosynthesis of O-methylated catechins in tea plant [J]. Nat Commun, 2023, 14(1): 5075. |
| 32 | He SM, Song WL, Cong K, et al. Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylicapnos scandens by transcriptome analysis [J]. Sci Rep, 2017, 7(1): 9119. |
| 33 | Robin AY, Giustini C, Graindorge M, et al. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids [J]. Plant J, 2016, 87(6): 641-653. |
| 34 | Pyne ME, Kevvai K, Grewal PS, et al. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids [J]. Nat Commun, 2020, 11(1): 3337. |
| 35 | 于荣敏, 王春盛, 宋丽艳. 罂粟科植物的化学成分及药理作用研究进展 [J]. 上海中医药杂志, 2004, 38(7): 59-61. |
| Yu RM, Wang CS, Song LY. Progress on the study of chemical constituents and pharmacological action for the plants of Papaveraceae [J]. Shanghai J Tradit Chin Med, 2004, 38(7): 59-61. | |
| 36 | Morris JS, Facchini PJ. Molecular origins of functional diversity in benzylisoquinoline alkaloid methyltransferases [J]. Front Plant Sci, 2019, 10: 1058. |
| 37 | Clapés P, Joglar J, Bujons J. Cascade biocatalysis: Integrating stereoselective and environmentally friendly reactions [M] . Hoboken: John Wiley & Sons, Inc, 2014. |
| 38 | Navarro G, Elliott HW. The effects of morphine, morphinone and thebaine on the EEG and behavior of rabbits and cats [J]. Neuropharmacology, 1971, 10(4): 367-377. |
| 39 | Ma WX, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP [J]. Nat Protoc, 2014, 9(6): 1428-1450. |
| 40 | Yang M, Fehl C, Lees KV, et al. Functional and informatics analysis enables glycosyltransferase activity prediction [J]. Nat Chem Biol, 2018, 14(12): 1109-1117. |
| 41 | 朱新焰, 杨维泽, 杨绍兵, 等. 紫金龙营养器官组织结构和组织化学定位研究 [J]. 西南农业学报, 2022, 35(2): 304-309. |
| Zhu XY, Yang WZ, Yang SB, et al. Tissue structure and histochemistry localization from different vegetative organs of Dactylicapnos scandens [J]. Southwest China J Agric Sci, 2022, 35(2): 304-309. | |
| 42 | 曹愿, 高晶, 高小力, 等. 紫金龙属生物碱及其药理活性研究进展 [J]. 中草药, 2014, 45(17): 2556-2563. |
| Cao Y, Gao J, Gao XL, et al. Research progress on alkaloids from genus Dactylicapnos Wall. and their pharmacological activities [J]. Chin Tradit Herb Drugs, 2014, 45(17): 2556-2563. | |
| 43 | Pienkny S, Brandt W, Schmidt J, et al. Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) [J]. Plant J, 2009, 60(1): 56-67. |
| 44 | Xu DQ, Lin HF, Tang YP, et al. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo [J]. Hortic Res, 2021, 8(1): 16. |
| [1] | JIA Zi-jian, WANG Bao-qiang, CHEN Li-fei, WANG Yi-zhen, WEI Xiao-hong, ZHAO Ying. Expression Patterns of CHX Gene Family in Quinoa in Response to NO under Saline-alkali Stress [J]. Biotechnology Bulletin, 2025, 41(2): 163-174. |
| [2] | HUANG Ying, YU Wen-jing, LIU Xue-feng, DIAO Gui-ping. Bioinformatics and Expression Pattern Analysis of Glutathione S-transferase in Populus davidiana × P. bolleana [J]. Biotechnology Bulletin, 2025, 41(2): 248-256. |
| [3] | XIANG Chun-fan, LI Le-song, WANG Juan, LIANG Yan-li, YANG Sheng-chao, LI Meng-fei, ZHAO Yan. Functional Identification and Expression Analysis of Cinnamonyl Alcohol Dehydrogenase AsCAD in Angelica sinensis [J]. Biotechnology Bulletin, 2025, 41(2): 295-308. |
| [4] | WANG Zi-ao, TIAN Rui, CUI Yong-mei, BAI Yi-xiong, YAO Xiao-hua, AN Li-kun, WU Kun-lun. Bioinformatics and Expression Pattern Analysis of HvnJAZ4 Gene in Hulless Barley [J]. Biotechnology Bulletin, 2025, 41(1): 173-185. |
| [5] | KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica [J]. Biotechnology Bulletin, 2025, 41(1): 210-220. |
| [6] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
| [7] | WU Hui-qin, WANG Yan-hong, LIU Han, SI Zheng, LIU Xue-qing, WANG Jing, YANG Yi, CHENG Yan. Identification and Expression Analysis of UGT Gene Family in Pepper [J]. Biotechnology Bulletin, 2024, 40(9): 198-211. |
| [8] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
| [9] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
| [10] | SUN Hui-qiong, ZHANG Chun-lai, WANG Xi-liang, XU Hong-shen, DOU Miao-miao, YANG Bo-hui, CHAI Wen-ting, ZHAO Shan-shan, JIANG Xiao-dong. Identification, Expression and DNA Variation Analysis of FLS Gene Family in Chenopodium quinoa [J]. Biotechnology Bulletin, 2024, 40(7): 172-182. |
| [11] | LIU Rong, TIAN Min-yu, LI Guang-ze, TAN Cheng-fang, RUAN Ying, LIU Chun-lin. Identification and Induced-expression Analysis of REVEILLE Family in Brassica napus L. [J]. Biotechnology Bulletin, 2024, 40(6): 161-171. |
| [12] | LI Jia-xin, LI Hong-yan, LIU Li-e, ZHANG Tian, ZHOU Wu. Identification and Expression Analysis of the NRAMP Family in Seabuckthorn Under Lead Stress [J]. Biotechnology Bulletin, 2024, 40(5): 191-202. |
| [13] | PAN Ping-ping, XU Zhi-hao, ZHANG Yi-wen, LI Qing, WANG Zhong-hua. Prokaryotic Expression, Subcellular Localization and Expression Analysis of PcCHS Gene from Polygonatum cyrtonema Hua [J]. Biotechnology Bulletin, 2024, 40(5): 280-289. |
| [14] | ZHANG Na, LIU Meng-nan, QU Zhan-fan, CUI Yi-ping, NI Jia-yao, WANG Hua-zhong. Alternative Translation of Wheat Enolase-encoding Gene ENO2 and Its Prokaryotic Expression [J]. Biotechnology Bulletin, 2024, 40(5): 112-119. |
| [15] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||