Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 289-301.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0823
XIA Xin-yuan1(
), XUE Dao-sheng1, LI Xin-jing1, LONG Jun-jie2, LU Kai-xing1, DING Wo-na1, LI Meng-sha1(
)
Received:2024-08-25
Online:2025-04-26
Published:2025-04-25
Contact:
LI Meng-sha
E-mail:Xiaxinyuan@163.com;limonms@163.com
XIA Xin-yuan, XUE Dao-sheng, LI Xin-jing, LONG Jun-jie, LU Kai-xing, DING Wo-na, LI Meng-sha. Identification of Multi-function Growth-promoting Bacteria in Rice-oilseed Rape Rotation Soil and Its Effect on the Growth and Rhizosphere Bacterial Community of Oilseed Rape (Brassica napus)[J]. Biotechnology Bulletin, 2025, 41(4): 289-301.
| 项目 Item | 结果 Result | 项目 Item | 结果 Result |
|---|---|---|---|
| 革兰氏染色 | - | V-P试验 | - |
| 好氧性试验 | 好氧 | 淀粉水解 | - |
| 接触酶试验 | + | 明胶液化 | + |
| 甲基红(M.R)试验 | + | 吲哚试验 | + |
Table 1 Physiological characteristics of strain LM1-2
| 项目 Item | 结果 Result | 项目 Item | 结果 Result |
|---|---|---|---|
| 革兰氏染色 | - | V-P试验 | - |
| 好氧性试验 | 好氧 | 淀粉水解 | - |
| 接触酶试验 | + | 明胶液化 | + |
| 甲基红(M.R)试验 | + | 吲哚试验 | + |
Fig. 3 Effects of different culture conditions on the growth status (OD600) of strain LM1-2Different letters indicate the effects of different conditions on the growth status of LM1-2 (P<0.05)
Fig. 4 Effects of different culture conditions on the phosphorus solubilization ability of strain LM1-2Different letters indicate the effects of different conditions on the phosphate solubilization capacity of LM1-2 (P<0.05)
Fig. 5 Effects of LM1-2 on the soil available phosphorus (A), plants (B) and roots (C) of oilseed rapes in the pot experiment* and ** indicate significant differences between treatments at 0.05 and 0.01 levels, respectively
Fig. 6 Principal component analysis of various indicators among potted oilseed rape seedlings under LM1-2 treatmentSAP: Soil available phosphorus; ABFW: above-ground biomass fresh weight; ABDW: above-ground biomass dry weight; UBFW: underground biomass fresh weight; UBDW: underground biomass dry weight; RL: total root length; RSA: root surface area; RD: root diameter; RV: root volume; RT: number of root tips; RF: number of root forks; RC: number of root crossings. The same below
Fig. 8 Veen plot (A) and Simpson index (B) of soil bacterial community treated with LM1-2* indicates significant difference between treatments at 0.05 level
处理 Treatment | Ace指数 Ace index | Chao指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index | Coverage指数 Coverage index | PD whole tree指数 PD whole tree index |
|---|---|---|---|---|---|---|
| CK | 1 026.83±117.25a | 1 016.89±114.48a | 8.38±0.08a | 0.986±0.00a | 0.980±0.01a | 35.58±2.33a |
| LM1-2 | 986.38±51.42a | 975.28±50.20a | 8.23±0.11a | 0.983±0.00b | 0.980±0.00a | 35.01±1.29a |
Table 2 Alpha diversity indexes of rhizosphere soil bacterial communities under different treatments
处理 Treatment | Ace指数 Ace index | Chao指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index | Coverage指数 Coverage index | PD whole tree指数 PD whole tree index |
|---|---|---|---|---|---|---|
| CK | 1 026.83±117.25a | 1 016.89±114.48a | 8.38±0.08a | 0.986±0.00a | 0.980±0.01a | 35.58±2.33a |
| LM1-2 | 986.38±51.42a | 975.28±50.20a | 8.23±0.11a | 0.983±0.00b | 0.980±0.00a | 35.01±1.29a |
Fig. 9 Composition of bacterial communities in the rhizosphere soil of oilseed rapes at the phylum (A), class (B), order (C), family (D) and genus (E) levels
| 1 | 陈妍, 傅树豪, 郭碧芝. 水稻油菜轮作栽培模式探讨 [J]. 农业技术与装备, 2023, 8: 145-147. |
| Chen Y, Fu SH, Guo BZ. Discussion on the cultivation mode of rice and rapeseed rotation [J]. Agricultural Technology & Equipment, 2023, 8: 145-147. | |
| 2 | 徐一荻, 刘春花, 谢富, 等. 供磷水平对核桃实生苗生长生理特性及酶活性的影响 [J]. 西南林业大学学报: 自然科学, 2021, 41(5): 27-35. |
| Xu YD, Liu CH, Xie F, et al. Effects of phosphorus supply on the growth, physiological characteristics and enzyme activity of Juglans regia seedlings [J]. J Southwest For Univ Sci, 2021, 41(5): 27-35. | |
| 3 | Fujita M, Hasanuzzaman M, Hawrylak-Nowak B, et al. Plant nutrients and abiotic stress tolerance [M]. Singapore: Springer Nature, 2018. |
| 4 | Chen A, Arai Y. A review of the reactivity of phosphatase controlled by clays and clay minerals: implications for understanding phosphorus mineralization in soils [J]. Clays Clay Miner, 2023, 71(2): 119-142. |
| 5 | Zhou J, Zhang YF, Wu KB, et al. National estimates of environmental thresholds for upland soil phosphorus in China based on a meta-analysis [J]. Sci Total Environ, 2021, 780: 146677. |
| 6 | 闫金垚, 郭丽璇, 王昆昆, 等. 长江流域稻-油轮作区土壤磷库现状及环境风险分析 [J]. 土壤学报, 2023, 60(1): 247-257. |
| Yan JY, Guo LX, Wang KK, et al. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River Basin [J]. Acta Pedol Sin, 2023, 60(1): 247-257. | |
| 7 | 陈凤, 王晓双, 甘国渝, 等. 长期施用磷肥对稻-油轮作土壤磷组分及微生物多样性的影响 [J]. 华中农业大学学报, 2021, 40(1): 168-178. |
| Chen F, Wang XS, Gan GY, et al. Effects of long-term application of phosphorus fertilizer on soil phosphorus fractions and microbial diversity in rice-rapeseed rotation [J]. J Huazhong Agric Univ, 2021, 40(1): 168-178. | |
| 8 | 刘英杰, 张丽红, 张宏, 等. 溶磷微生物在土壤磷循环中的作用研究进展 [J]. 微生物学通报, 2023, 50(8): 3671-3687. |
| Liu YJ, Zhang LH, Zhang H, et al. Role of phosphate solubilizing microorganisms in soil phosphorus cycle: a review [J]. Microbiol China, 2023, 50(8): 3671-3687. | |
| 9 | Liang JL, Liu J, Jia P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. ISME J, 2020, 14(6): 1600-1613. |
| 10 | 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展 [J]. 生态学报, 2023, 43(11): 4390-4399. |
| Tao DX, Gao YZ. Advances on the strategies of soil phosphate solubilizing microorganisms to promote plant phosphorus uptake [J]. Acta Ecol Sin, 2023, 43(11): 4390-4399. | |
| 11 | 张昊鑫, 王中华, 牛兵, 等. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用 [J]. 生物技术通报, 2022, 38(5):100-111. |
| Zhang HX, Wang ZH, Niu B, et al. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. | |
| 12 | 许丽宁, 徐敬棋, 邵彩虹, 等. 再生稻根际促生菌的分离、筛选与鉴定 [J]. 南方农业学报, 2020, 51(4): 814-821. |
| Xu LN, Xu JQ, Shao CH, et al. Isolation, screening and identification of plant growthpromoting rhizobacteria from ratooning rice [J]. J South Agric, 2020, 51(4): 814-821. | |
| 13 | Liu J, Qi WY, Li Q, et al. Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly [J]. 3 Biotech, 2020, 10(4): 164. |
| 14 | 李正昀, 王舒, 张扬, 等. 施加解磷菌剂对油茶根际微生物和土壤酶活性的影响 [J]. 西北林学院学报, 2018, 33(1): 188-192. |
| Li ZY, Wang S, Zhang Y, et al. Effects of different phosphate-solubilizing bacteria on rhizosphere microorganism and enzyme activities of Camellia oleifera [J]. J Northwest For Univ, 2018, 33(1): 188-192. | |
| 15 | 杜雷, 陈钢, 王素萍, 等. 解磷菌剂对生菜根际土壤微生物数量和酶活性的影响 [J]. 湖北农业科学, 2019, 58(11): 70-74. |
| Du L, Chen G, Wang SP, et al. Effects of phosphate-solubilizing bacteria on rhizosphere microorganism and enzyme activities of lettuce [J]. Hubei Agric Sci, 2019, 58(11): 70-74. | |
| 16 | 马莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用 [J]. 微生物学报, 2023, 63(12): 4502-4521. |
| Ma Y, Cheng YY, Shi XJ, et al. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers [J]. Acta Microbiol Sin, 2023, 63(12): 4502-4521. | |
| 17 | 赵小蓉, 林启美, 孙焱鑫, 等. 细菌解磷能力测定方法的研究 [J]. 微生物学通报, 2001, 28(1): 1-4. |
| Zhao XR, Lin QM, Sun YX, et al. The methods for quantifying capacity of bacteria in dissolving p compounds [J]. Microbiology, 2001, 28(1): 1-4. | |
| 18 | Libbert E, Manteuffel R. Interactions between plants and epiphytic bacteria regarding their auxin metabolism [J]. Physiol Plant, 1970, 23(1): 93-98. |
| 19 | Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria [J]. Appl Environ Microbiol, 1995, 61(2): 793-796. |
| 20 | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册 [M]. 北京: 科学出版社, 2001. |
| Dong XZ, Cai MY. Handbook of identification of common bacterial systems [M]. Beijing: Science Press, 2001. | |
| 21 | Nossa CW, Oberdorf WE, Yang LY, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome [J]. World J Gastroenterol, 2010, 16(33): 4135-4144. |
| 22 | Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data [J]. Nat Methods, 2016, 13(7): 581-583. |
| 23 | Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J]. Nat Biotechnol, 2019, 37(8): 852-857. |
| 24 | 宋雅荣, 常单娜, 周国朋, 等. 解磷细菌活化水稻土中低品位磷矿粉的效果与机制 [J]. 中国农业科学, 2024, 57(6): 1102-1116. |
| Song YR, Chang DN, Zhou GP, et al. Effect and mechanism of phosphate-solubilizing bacterial on activating of low-grade phosphate rock powder in red paddy soil [J]. Sci Agric Sin, 2024, 57(6): 1102-1116. | |
| 25 | 刘俊清, 金晓雪, 宋科稷, 等. 一株溶磷真菌的筛选及相关促生特性初探 [J]. 安徽大学学报: 自然科学版, 2023, 47(3): 90-97. |
| Liu JQ, Jin XX, Song KJ, et al. Screening and identification of a high-efficient phosphate-solubilizing fungus Penicillium decumbens and analysis of its phosphate-solubilizing characteristics [J]. J Anhui Univ Nat Sci, 2023, 47(3): 90-97. | |
| 26 | Boubekri K, Soumare A, Lyamlouli K, et al. Improving the efficiency of phosphate rocks combined with phosphate solubilizing Actinomycetota to increase wheat growth under alkaline and acidic soils [J]. Front Plant Sci, 2023, 14: 1154372. |
| 27 | 吴洋洋.促生长草甘膦降解菌筛选及其对油菜营养品质的影响研究[D]. 沈阳: 沈阳农业大学, 2023. |
| Wu YY. Screening of Growth-promoting Glyphosate-degrading Bacteria and Its Effect on the Nutritional Quality of Rape [D]. Shenyang: Shenyang Agricultural University, 2023. | |
| 28 | 吕俊, 王晓娅. 溶磷微生物及其对植物促生作用的研究进展 [J]. 中国土壤与肥料, 2023(1): 231-239. |
| Lü J, Wang XY. Research progress on phosphorus-solubilizing microorganisms and their effects on plant growth [J]. Soils Fertil Sci China, 2023(1): 231-239. | |
| 29 | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展 [J]. 微生物学杂志, 2021, 41(1): 1-7. |
| Chi JL, Hao M, Wang ZX, et al. Advances in research and application of phosphorus-solubilizing microorganism [J]. J Microbiol, 2021, 41(1): 1-7. | |
| 30 | Gross A, Lin Y, Weber PK, et al. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests [J]. Ecology, 2020, 101(2): e02928. |
| 31 | 刘玲利, 卫迎, 刘洋, 等. 不同解磷菌群对复垦土壤磷素形态及油菜产量的影响 [J]. 华北农学报, 2017, 32(6): 229-234. |
| Liu LL, Wei Y, Liu Y, et al. Effects of different phosphorus-solubilizing flora on phosphorus forms and rape yield in reclaimed soil [J]. Acta Agric Boreali Sin, 2017, 32(6): 229-234. | |
| 32 | Valetti L, Iriarte L, Fabra A. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria [J]. Appl Soil Ecol, 2018, 132: 1-10. |
| 33 | 张亮, 盛浩, 谭丽, 等. 复合促生菌株筛选及其对油菜、黄瓜幼苗的促生效果[J]. 蔬菜, 2020, (6):15-19. |
| Zhang L, Sheng H, Tan L, et al. Screening of multifunctional PGPR and their promotion effects on rape and cucumber seedlings [J]. Vegetables, 2020, (6): 15-19. | |
| 34 | 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展 [J]. 中国土壤与肥料, 2020(2): 1-9. |
| Zhang YC, Liu FZ, Wang HB. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes [J]. Soils Fertil Sci China, 2020(2): 1-9. | |
| 35 | 李欣欣, 赵静, 廖红. 吲哚乙酸、吲哚丁酸和萘乙酸对大豆幼根生长的影响 [J]. 植物生理学报, 2013, 49(6): 573-578. |
| Li XX, Zhao J, Liao H. Effects of indoleacetic acid, indolebutyric acid and naphthylacetic acid on soybean[Glycine max (L.) merr]root growth [J]. Plant Physiol J, 2013, 49(6): 573-578. | |
| 36 | 王志刚, 胡云龙, 徐伟慧, 等. 一株溶磷菌的分离鉴定及对西瓜根系的促生效应 [J]. 浙江农业学报, 2015, 27(5): 798-803. |
| Wang ZG, Hu YL, Xu WH, et al. Separation and identification of a phosphorus solubilizing bacteria and its promoting effect on watermelon root [J]. Acta Agric Zhejiangensis, 2015, 27(5): 798-803. | |
| 37 | Nagah A, El-Sheekh MM, Arief OM, et al. Endophytic Bacillus vallismortis and Bacillus tequilensis bacteria isolated from medicinal plants enhance phosphorus acquisition and fortify Brassica napus L. vegetative growth and metabolic content [J]. Front Plant Sci, 2024, 15: 1324538. |
| 38 | Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems [J]. Nat Rev Earth Environ, 2023, 4: 4-18. |
| 39 | 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制 [D]. 哈尔滨: 哈尔滨工业大学, 2019. |
| Jiang HH. Saline-alkali soil remediation by the combined application of halotolerant phosphate solubilizing microorganism and rock phosphate [D]. Harbin: Harbin Institute of Technology, 2019. | |
| 40 | Kalam S, Basu A, Ahmad I, et al. Recent understanding of soil acidobacteria and their ecological significance: a critical review [J]. Front Microbiol, 2020, 11: 580024. |
| 41 | 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展 [J]. 生命科学研究, 2019, 23(1): 59-64, 86. |
| Qin LJ, Yang YZ, Yang XY. Advances in mechanisms of soil phosphorus solubilization and dissolution by phosphate solubilizing microorganisms [J]. Life Sci Res, 2019, 23(1): 59-64, 86. | |
| 42 | 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展 [J]. 生物技术通报, 2016, 32(2): 14-20. |
| Wang GH, Liu JJ, Yu ZH, et al. Research progress of acidobacteria ecology in soils [J]. Biotechnol Bull, 2016, 32(2): 14-20. | |
| 43 | Ganz HH, Karaoz U, Getz WM, et al. Diversity and structure of soil bacterial communities associated with vultures in an African savanna [J]. Ecosphere, 2012, 3(6): 1-18. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||