Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (5): 255-266.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0994
CHEN Yong-qi1,2(
), LI Zhi-wen1,2, LI Xin1, YUAN Ruo-xi1, WANG Chun-xu1,2, HAN Yi-qiang1,2,3, GAO Ya-mei1,2,4(
)
Received:2024-10-12
Online:2025-05-26
Published:2025-06-05
Contact:
GAO Ya-mei
E-mail:3065408202@qq.com;gaoym800@126.com
CHEN Yong-qi, LI Zhi-wen, LI Xin, YUAN Ruo-xi, WANG Chun-xu, HAN Yi-qiang, GAO Ya-mei. Isolation and Function Study of Actinomycetes from Rhizosphere Soil of Soybean in the Black Soil Region[J]. Biotechnology Bulletin, 2025, 41(5): 255-266.
Fig. 1 Comparison of the number of actinomycetes isolated from the rhizosphere soil of diseased and healthy plants using four different mediaLSV: Soybean cake medium; GS: Gauze's medium No.1; HV: humic acid medium; GS2: improved Gao's No.1; JDN: strain from the rhizosphere soil of healthy soybean; HDN: strain from the rhizosphere soil of diseased soybeans. The same below
菌株 Strain | 大豆疫霉 P. sojae | 尖孢镰刀菌 F. oxysporum | 小麦赤霉菌 G. triticum | 燕麦镰刀菌 F. oat | 玉米大斑病菌 J. spot | 核盘菌 S. sclerotiorum | 芹菜灰霉菌 Celery cinerine mold | 麦根镰刀菌 F. rhizome | 稻瘟病菌 M. oryzae |
|---|---|---|---|---|---|---|---|---|---|
| LSV-JDN-1 | 45.84 | 30.67 | 14.74 | 11.16 | 17.88 | 17.53 | 19.55 | 30.98 | 26.98 |
| LSV-JDN-3 | 44.67 | 30.79 | 27.99 | 20.48 | 20.78 | 19.35 | 17.46 | 17.69 | 27.38 |
| GS2-JDN-7 | 40.27 | 32.03 | 20.61 | 19.52 | 12.48 | 16.35 | 15.20 | 18.34 | 25.56 |
| LSV-JDN-8 | 42.56 | 27.80 | 15.05 | 14.62 | 14.45 | 18.26 | 24.55 | 27.38 | 35.95 |
| LSV-JDN-10 | 41.58 | 20.74 | 14.70 | 12.64 | 20.75 | 17.68 | 25.64 | 26.10 | 28.39 |
| GS-JDN-13 | 45.64 | 22.56 | 无 | 无 | 8.56 | 18.91 | 18.58 | 25.87 | 34.10 |
| HV-HDN-5-1 | 42.87 | 30.69 | 13.26 | 8.64 | 16.58 | 15.24 | 23.13 | 19.35 | 30.64 |
| LSV-HDN-6 | 40.77 | 20.14 | 12.84 | 18.76 | 13.26 | 19.21 | 20.68 | 25.67 | 31.49 |
| HV-HDN-12 | 45.48 | 34.59 | 10.19 | 21.15 | 20.18 | 18.18 | 22.87 | 24.87 | 28.76 |
| GS-HDN-12-1 | 43.44 | 34.98 | 20.69 | 25.05 | 22.14 | 16.54 | 15.74 | 11.43 | 23.98 |
| GS-HDN-12-2 | 43.64 | 36.39 | 无 | 12.38 | 23.67 | 12.36 | 21.35 | 18.64 | 29.86 |
Table 1 Antifungal activity of actinomycetes isolated from different soils against plant pathogens
菌株 Strain | 大豆疫霉 P. sojae | 尖孢镰刀菌 F. oxysporum | 小麦赤霉菌 G. triticum | 燕麦镰刀菌 F. oat | 玉米大斑病菌 J. spot | 核盘菌 S. sclerotiorum | 芹菜灰霉菌 Celery cinerine mold | 麦根镰刀菌 F. rhizome | 稻瘟病菌 M. oryzae |
|---|---|---|---|---|---|---|---|---|---|
| LSV-JDN-1 | 45.84 | 30.67 | 14.74 | 11.16 | 17.88 | 17.53 | 19.55 | 30.98 | 26.98 |
| LSV-JDN-3 | 44.67 | 30.79 | 27.99 | 20.48 | 20.78 | 19.35 | 17.46 | 17.69 | 27.38 |
| GS2-JDN-7 | 40.27 | 32.03 | 20.61 | 19.52 | 12.48 | 16.35 | 15.20 | 18.34 | 25.56 |
| LSV-JDN-8 | 42.56 | 27.80 | 15.05 | 14.62 | 14.45 | 18.26 | 24.55 | 27.38 | 35.95 |
| LSV-JDN-10 | 41.58 | 20.74 | 14.70 | 12.64 | 20.75 | 17.68 | 25.64 | 26.10 | 28.39 |
| GS-JDN-13 | 45.64 | 22.56 | 无 | 无 | 8.56 | 18.91 | 18.58 | 25.87 | 34.10 |
| HV-HDN-5-1 | 42.87 | 30.69 | 13.26 | 8.64 | 16.58 | 15.24 | 23.13 | 19.35 | 30.64 |
| LSV-HDN-6 | 40.77 | 20.14 | 12.84 | 18.76 | 13.26 | 19.21 | 20.68 | 25.67 | 31.49 |
| HV-HDN-12 | 45.48 | 34.59 | 10.19 | 21.15 | 20.18 | 18.18 | 22.87 | 24.87 | 28.76 |
| GS-HDN-12-1 | 43.44 | 34.98 | 20.69 | 25.05 | 22.14 | 16.54 | 15.74 | 11.43 | 23.98 |
| GS-HDN-12-2 | 43.64 | 36.39 | 无 | 12.38 | 23.67 | 12.36 | 21.35 | 18.64 | 29.86 |
菌株 Strain | IAA产量 IAA yield (μg/mL) | ACC脱氨酶 ACC deaminase | 铁载体 Siderophore |
|---|---|---|---|
| LSV-JDN-1 | 13.47 | + | + |
| HV-HDN-12 | 49.6 | ++ | - |
Table 2 Growth-promoting results of LSV-JDN-1 and HV-HDN-12
菌株 Strain | IAA产量 IAA yield (μg/mL) | ACC脱氨酶 ACC deaminase | 铁载体 Siderophore |
|---|---|---|---|
| LSV-JDN-1 | 13.47 | + | + |
| HV-HDN-12 | 49.6 | ++ | - |
培养基 Medium | HV-HDN-12 | LSV-JDN-1 | ||||||
|---|---|---|---|---|---|---|---|---|
气生菌丝 Aerial mycelium | 基内菌丝 Intracellular myceliumm | 生长状况 Growth state | 可溶性色素Soluble pigments | 气生菌丝 Aerial mycelium | 基内菌丝 Intracellular myceliumm | 生长状况 Growth state | 可溶性色素Soluble pigments | |
| ISP2 | 白色 White | 浅黄色 Yellowish | 一般 Poor | 无 None | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None |
| ISP3 | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None | 白色 White | 白色 White | 良好 Good | 无 None |
| ISP4 | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None | 白色 White | 黑灰色 Dark Gray | 良好 Good | 无 None |
| ISP5 | 浅黄色 Yellowish | 浅黄色 Yellowish | 一般 Poor | 无 None | 白色 White | 白色 White | 一般 Poor | 无 None |
| ISP6 | 灰色 Gray | 灰色 Gray | 一般 Poor | 无 None | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None |
| ISP7 | 白色 White | 灰色 Gray | 良好 Good | 无 None | 灰色 Gray | 黄棕色 Yellowish brown | 良好 Good | 无 None |
| 察氏Czapek’s | 白色 White | 白色 White | 一般 Poor | 无 None | 白色 White | 白色 White | 一般 Poor | 无 None |
Table 3 Growth feature of strain HV-HDN-12 and LSV-JDN-1 on different media
培养基 Medium | HV-HDN-12 | LSV-JDN-1 | ||||||
|---|---|---|---|---|---|---|---|---|
气生菌丝 Aerial mycelium | 基内菌丝 Intracellular myceliumm | 生长状况 Growth state | 可溶性色素Soluble pigments | 气生菌丝 Aerial mycelium | 基内菌丝 Intracellular myceliumm | 生长状况 Growth state | 可溶性色素Soluble pigments | |
| ISP2 | 白色 White | 浅黄色 Yellowish | 一般 Poor | 无 None | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None |
| ISP3 | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None | 白色 White | 白色 White | 良好 Good | 无 None |
| ISP4 | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None | 白色 White | 黑灰色 Dark Gray | 良好 Good | 无 None |
| ISP5 | 浅黄色 Yellowish | 浅黄色 Yellowish | 一般 Poor | 无 None | 白色 White | 白色 White | 一般 Poor | 无 None |
| ISP6 | 灰色 Gray | 灰色 Gray | 一般 Poor | 无 None | 白色 White | 浅黄色 Yellowish | 良好 Good | 无 None |
| ISP7 | 白色 White | 灰色 Gray | 良好 Good | 无 None | 灰色 Gray | 黄棕色 Yellowish brown | 良好 Good | 无 None |
| 察氏Czapek’s | 白色 White | 白色 White | 一般 Poor | 无 None | 白色 White | 白色 White | 一般 Poor | 无 None |
实验项目 Test | LSV-JDN-1 | HV-HDN-12 | 实验项目 Test item | LSV- JDN-1 | HV-HDN-12 |
|---|---|---|---|---|---|
乳糖 Lactose | + | + | 苏氨酸 Threonine | + | + |
鼠李糖 Rhamnose | + | - | 谷氨酰胺 Glutamine | + | + |
棉子糖 Marshmallow | + | - | 酪氨酸 Tyrosine | - | + |
甘露醇 Mannitol | + | - | 精氨酸 Argnine | + | + |
葡萄糖 Glucose | + | + | 丙氨酸 Alanine | + | + |
木糖 Xylose | - | + | 牛奶凝固与胨化 Milk peptonization | + | + |
甘露糖 Mannose | + | + | 明胶液化 Gelatin Liquefaction | + | + |
阿拉伯糖 Arabinose | - | + | 淀粉水解 Starch hydrolysis | + | + |
肌醇 Inositol | + | - | 硫化氢产生 Hydrogen Sulfide Generation | - | - |
半乳糖 Galactose | + | + | 硝酸盐还原 Nitrate Reduction | + | + |
蔗糖 Fructose | + | - | 纤维素水解 Urease | - | - |
天冬氨酸 Aspartic acid | - | - | 脲酶 Lipase | - | - |
肌酸 Creatine | + | + |
Table 4 Physiological and biochemical characteristics of strain
实验项目 Test | LSV-JDN-1 | HV-HDN-12 | 实验项目 Test item | LSV- JDN-1 | HV-HDN-12 |
|---|---|---|---|---|---|
乳糖 Lactose | + | + | 苏氨酸 Threonine | + | + |
鼠李糖 Rhamnose | + | - | 谷氨酰胺 Glutamine | + | + |
棉子糖 Marshmallow | + | - | 酪氨酸 Tyrosine | - | + |
甘露醇 Mannitol | + | - | 精氨酸 Argnine | + | + |
葡萄糖 Glucose | + | + | 丙氨酸 Alanine | + | + |
木糖 Xylose | - | + | 牛奶凝固与胨化 Milk peptonization | + | + |
甘露糖 Mannose | + | + | 明胶液化 Gelatin Liquefaction | + | + |
阿拉伯糖 Arabinose | - | + | 淀粉水解 Starch hydrolysis | + | + |
肌醇 Inositol | + | - | 硫化氢产生 Hydrogen Sulfide Generation | - | - |
半乳糖 Galactose | + | + | 硝酸盐还原 Nitrate Reduction | + | + |
蔗糖 Fructose | + | - | 纤维素水解 Urease | - | - |
天冬氨酸 Aspartic acid | - | - | 脲酶 Lipase | - | - |
肌酸 Creatine | + | + |
项目 Item | HV-HDN-12/F4 | LSV-JND-1/F3 |
|---|---|---|
菌落直径 Colony diameter (mm) | 48.62±1.8 | 67.69±1.43 |
抑制率 Inhibition rate (%) | 42.79 | 20.34 |
Table 5 Effects of different fermentation media on the inhibitory activities of fermentation broths
项目 Item | HV-HDN-12/F4 | LSV-JND-1/F3 |
|---|---|---|
菌落直径 Colony diameter (mm) | 48.62±1.8 | 67.69±1.43 |
抑制率 Inhibition rate (%) | 42.79 | 20.34 |
| 1 | 张鸿雁, 高擎, 张琳园, 等. 大豆疫病拮抗菌的筛选及促生抗病作用研究 [J]. 生物技术通报, 2020, 36(10): 25-31. |
| Zhang HY, Gao Q, Zhang LY, et al. Screening of actinomycetes against Phytophthora root rot of soybean and its growth promotion and disease control [J]. Biotechnol Bull, 2020, 36(10): 25-31. | |
| 2 | 马淑梅, 李宝英. 大豆疫霉根腐病菌生理小种鉴定结果初报 [J]. 大豆科学, 1999, 18(2): 58-60. |
| Ma SM, Li BY. A prelminary report on the identification ofthe physiological races of Phytophthora megasperma [J]. Soybean Sci, 1999, 18(2): 58-60. | |
| 3 | Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete [J]. Mol Plant Pathol, 2007, 8(1): 1-8. |
| 4 | Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health [J]. Trends Plant Sci, 2012, 17(8): 478-486. |
| 5 | Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production [J]. World J Microbiol Biotechnol, 2009, 25(4): 649-655. |
| 6 | Jiménez-Esquilín AE, Roane TM. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere [J]. J Ind Microbiol Biotechnol, 2005, 32(8): 378-381. |
| 7 | 蒋莲秀, 吴越, 陈建宏, 等. 6株红树林根际土壤放线菌的分离鉴定及活性测定 [J]. 中国病原生物学杂志, 2017, 12(6): 513-518. |
| Jiang LX, Wu Y, Chen JH, et al. Identification of six Actinomycetes strains isolated from mangrove rhizosphere soil and determination of their activity [J]. J Pathog Biol, 2017, 12(6): 513-518. | |
| 8 | 陈龙池, 廖利平, 汪思龙, 等. 根系分泌物生态学研究 [J]. 生态学杂志, 2002, 21(6): 57-62, 28. |
| Chen LC, Liao LP, Wang SL, et al. A review for research of root exudates ecology [J]. Chin J Ecol, 2002, 21(6): 57-62, 28. | |
| 9 | AbdElgawad H, Abuelsoud W, Madany MMY, et al. Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism [J]. Biomolecules, 2020, 10(12): 1675. |
| 10 | Poomthongdee N, Duangmal K, Pathom-aree W. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants [J]. J Antibiot, 2015, 68(2): 106-114. |
| 11 | Genilloud O. Actinomycetes: still a source of novel antibiotics [J]. Nat Prod Rep, 2017, 34(10): 1203-1232. |
| 12 | Kunova A, Bonaldi M, Saracchi M, et al. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth [J]. BMC Microbiol, 2016, 16(1): 272. |
| 13 | Arcamone F, Camerino B, Cotta E, et al. New carotenoids from Streptomyces mediolani n. sp [J]. Experientia, 1969, 25(3): 241-242. |
| 14 | 纠敏, 李晶晶, 李伟山, 等. 大豆疫霉病病菌生防放线菌的筛选、鉴定及生防效果 [J]. 江苏农业学报, 2021, 37(5): 1137-1142. |
| Jiu M, Li JJ, Li WS, et al. Screening, identification and biocontrol effect of actinomycetes against Phytophthora sojae [J]. Jiangsu J Agric Sci, 2021, 37(5): 1137-1142. | |
| 15 | 李菲, 杨玲, 王巧贞, 等. 红树林放线菌抗沃柑病原真菌的研究 [J]. 中国抗生素杂志, 2022, 47(7): 638-646. |
| Li F, Yang L, Wang QZ, et al. Study on mangrove actinomycetes against pathogenetic fungi of Orah [J]. Chin J Antibiot, 2022, 47(7): 638-646. | |
| 16 | Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores [J]. Anal Biochem, 1987, 160(1): 47-56. |
| 17 | 徐丽华, 李文均, 刘志恒, 等. 放线菌系统学: 原理、方法及实践 [M]. 北京: 科学出版社, 2007. |
| Xu LH, Li WJ, Liu ZH, et al. Actinomycete systematic [M]. Beijing: Science Press, 2007. | |
| 18 | 张璐. 产铁载体细菌强化甜高粱修复土壤重金属污染 [J]. 环境科学与技术, 2014, 37(4): 74-79. |
| Zhang L. Bioaugmentation with siderophore-producing bacteria to enhance phytoremediation of heavy metal polluted soil by sweet Sorghum [J]. Environ Sci Technol, 2014, 37(4): 74-79. | |
| 19 | 谢远国, 王雅楠, 刘畅, 等. 盐生植物碱蓬二型果实表生细菌的群落组成及促生属性 [J]. 微生物学通报, 2018, 45(7): 1426-1437. |
| Xie YG, Wang YN, Liu C, et al. The community composition and growth-promoting activities of the cultivable epiphytic bacteria from the dimorphic fruits of Suaeda glauca Bunge [J]. Microbiol China, 2018, 45(7): 1426-1437. | |
| 20 | Shin SH, Lim Y, Lee SE, et al. CAS agar diffusion assay for the measurement of siderophores in biological fluids [J]. J Microbiol Methods, 2001, 44(1): 89-95. |
| 21 | 邵嘉朱, 吕雯, 廖鑫琳, 等. 大豆根际促生菌的分离、鉴定及其耐盐促生作用 [J]. 中国农业科学, 2024, 57(21): 4248-4263. |
| Shao JZ, Lü W, Liao XL, et al. Isolation and identification of soybean rhizosphere growth-promoting bacteria and their salt tolerance and growth-promoting effects [J]. Sci Agric Sin, 2024, 57(21): 4248-4263. | |
| 22 | 周雪, 崔俊涛, 李明堂, 等. 土壤微生物助力东北黑土区农业资源与环境保护与发展 [J]. 吉林农业大学学报, 2022, 44(6): 679-687. |
| Zhou X, Cui JT, Li MT, et al. Contribution of soil microorganisms to agricultural resources and environment development in black soil region of NorthEast China [J]. J Jilin Agric Univ, 2022, 44(6): 679-687. | |
| 23 | Lundberg DS, Lebeis SL, Paredes SH, et al. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012, 488(7409): 86-90. |
| 24 | Schreiter S, Ding GC, Heuer H, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce [J]. Front Microbiol, 2014, 5: 144. |
| 25 | Li H, Yang XR, Weng BS, et al. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil [J]. Soil Biol Biochem, 2016, 100: 59-65. |
| 26 | 赵珊珊. 大豆菌核病生防放线菌的筛选及Micromonospora parathelypteridis新种的鉴定 [D]. 哈尔滨: 东北农业大学, 2017. |
| Zhao SS. Screening of actinomycetes for biocontrol of soybean Sclerotinia sclerotiorum and identification of new species of Micromonospora parathylpteridis [D]. Harbin: Northeast Agricultural University, 2017. | |
| 27 | Nakagawa K, Sato K, Okazaki T, et al. Microbial conversion of milbemycins: 13 beta, 29-dihydroxylation of milbemycins by soil isolate Streptomyces cavourensis [J]. J Antibiot, 1991, 44(7): 803-805. |
| 28 | Sudha S, Masilamani SM. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4 [J]. Asian Pac J Trop Biomed, 2012, 2(10): 770-773. |
| 29 | 周丽娜, 王莉莉, 张永娜, 等. 2株放线菌的抗菌活性及分类学地位 [J]. 中国农学通报, 2015, 31(11): 182-189. |
| Zhou LN, Wang LL, Zhang YN, et al. Antifungal activity and taxonomic status of two actinomycetes [J]. Chin Agric Sci Bull, 2015, 31(11): 182-189. | |
| 30 | Sheik GB, Alhumaidy AA, Abdel Raheim AIA, et al. Taxonomic characterizations of soil Streptomyces cavourensis DW102 and its activity against fungal pathogens [J]. J Pharm Bioallied Sci, 2020, 12(4): 462-467. |
| 31 | 杨少彬, 黄永春, 陈志永, 等. 卡伍尔链霉菌TJ430的分离鉴定及抗菌活性研究 [J]. 中国抗生素杂志, 2015, 40(7): 506-512. |
| Yang SB, Huang YC, Chen ZY, et al. Isolation, identification of Streptomyces cavourensis TJ430 strain and its antimicrobial activity [J]. Chin J Antibiot, 2015, 40(7): 506-512. | |
| 32 | Kaaniche F, Hamed A, Elleuch L, et al. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation [J]. Microb Pathog, 2020, 142: 104106. |
| 33 | Pan HQ, Yu SY, Song CF, et al. Identification and characterization of the antifungal substances of a novel Streptomyces cavourensis NA4 [J]. J Microbiol Biotechnol, 2015, 25(3): 353-357. |
| 34 | Tangwattanachuleeporn M, Ruangsuj P, Yamprayoonswat W, et al. Genome sequence of Streptomyces cavourensis BUU135, isolated from soil from a tropical fruit farm in Thailand [J]. Microbiol Resour Announc, 2021, 10(19): e01428-20. |
| 35 | Lai JH, Liu B, Xiong GH, et al. Inhibitory mechanism of 4-ethyl-1, 2-dimethoxybenzene produced by Streptomyces albidoflavus strain ML27 against Colletotrichum gloeosporioides [J]. Pestic Biochem Physiol, 2024, 204: 106086. |
| 36 | Pérez-Valero Á, Ye SH, Magadán-Corpas P, et al. Metabolic engineering in Streptomyces albidoflavus for the biosynthesis of the methylated flavonoids sakuranetin, acacetin, and genkwanin [J]. Microb Cell Fact, 2023, 22(1): 234. |
| 37 | Lee SY, Tindwa H, Lee YS, et al. Biocontrol of anthracnose in pepper using chitinase, beta-1, 3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224 [J]. J Microbiol Biotechnol, 2012, 22(10): 1359-1366. |
| 38 | Broadway RM, Williams DL, Kain WC, et al. Partial characterization of chitinolytic enzymes from Streptomyces albidoflavus [J]. Lett Appl Microbiol, 1995, 20(5): 271-276. |
| 39 | Du YX, Wang TL, Jiang JY, et al. Biological control and plant growth promotion properties of Streptomyces albidoflavus St-220 isolated from Salvia miltiorrhiza rhizosphere [J]. Front Plant Sci, 2022, 13: 976813. |
| 40 | Carlucci A, Raimondo ML, Colucci D, et al. Streptomyces albidoflavus strain CARA17 as a biocontrol agent against fungal soil-borne pathogens of fennel plants [J]. Plants, 2022, 11(11): 1420. |
| 41 | Boukelloul I, Aouar L, Cherb N, et al. Actinobacteria isolated from soils of arid Saharan regions display simultaneous antifungal and plant growth promoting activities [J]. Curr Microbiol, 2024, 81(10): 327. |
| 42 | Hocinat A, Boudemagh A, Ali-Khodja H, et al. Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils [J]. Arch Microbiol, 2020, 202(9): 2481-2492. |
| [1] | LIU Li, WANG Hui, GUAN Tian-shu, LI Bai-hong, YU Shu-yi. Screening the Interacting Protein of Abscisic Acid Receptor VvPYL4 and the Gene Expression of the Interacting Protein in Grape [J]. Biotechnology Bulletin, 2025, 41(4): 188-197. |
| [2] | SONG Jia-yi, SU Yun-li, ZHENG Xing-yan, XIA Wen-nian, YANG Dong-mei, HU Hui-zhen. Identification of the Snapdragon Expansin Gene Family and Screening of Its Genes Related to Resistance to Sclerotinia sclerotiorum [J]. Biotechnology Bulletin, 2025, 41(4): 227-242. |
| [3] | LIU Shuang, JIANG Zhou, ZHAO Shuai, ZHAO Lei-zhen, HUANG Feng, ZHOU Jia, QU Jian-hang. Screening, Identification, and Fermentation Optimization of a Protease-producing Bacterial Strain [J]. Biotechnology Bulletin, 2025, 41(4): 335-344. |
| [4] | DU Wei, LI Zhi-min, XING Yan-ming, LIU Pu-lin, MIAO Li-hong. Screening and Identification of a Bacillus licheniformis Strain with High Electro-transfection Efficiency and Elevated Biomass [J]. Biotechnology Bulletin, 2024, 40(9): 181-189. |
| [5] | XING Li-nan, ZHANG Yan-fang, GE Ming-ran, ZHAO Ling-min, CHEN Yan, HUO Xiu-wen. Analysis of DoWRKY40 Gene Expression Characteristics and Screening of Interacting Proteins in Yam [J]. Biotechnology Bulletin, 2024, 40(8): 118-128. |
| [6] | WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot [J]. Biotechnology Bulletin, 2024, 40(7): 216-225. |
| [7] | ZHOU Jiang-hong, XIA Fei, ZHONG Li, QIU Lan-fen, LI Guang, LIU Qian, ZHANG Guo-feng, SHAO Jin-li, LI Na, CHE Shao-chen. Whole Genome Sequencing and Comparative Genomic Analysis of Antagonistic Bacterium CCBC3-3-1 against Verticillium dahlia [J]. Biotechnology Bulletin, 2024, 40(7): 235-246. |
| [8] | XU Wei-fang, LI He-yu, ZHANG Hui, HE Zi-ang, GAO Wen-heng, XIE Zi-yang, WANG Chuan-wen, YIN Deng-ke. Efficacy and Its Mechanism of Bacterial Strain HX0037 on the Control of Anthracnose Disease of Trichosanthes kirilowii Maxim [J]. Biotechnology Bulletin, 2024, 40(4): 228-241. |
| [9] | SHAO Chang-xuan, ZHANG Shao-hua, DENG Hao-ran, YU Wei-kang, ZHU Yong-jie, SHAN An-shan. Database-aided Design of Antimicrobial Peptides [J]. Biotechnology Bulletin, 2024, 40(12): 12-19. |
| [10] | ZHAO Zheng-yang, XIE Bing-yan, CHENG Xin-yue, LI Hui-xia. Progress in the Mining and Utilization of Insect-associated Actinomycete Resources [J]. Biotechnology Bulletin, 2024, 40(11): 113-124. |
| [11] | LI Xi, BIAN Zi-jun, NING Zhou-shen, LIU Hong-yu, ZENG Bing, DONG Wei. Studies on the Growth-promoting Effect of Bacillus Strain from Rhizosphere in Ionic Rare Earth Ores [J]. Biotechnology Bulletin, 2024, 40(11): 259-268. |
| [12] | PI Yi-fei, SONG Xin-hui, WANG Xi-lin, LI Jin-jin, SUN Chang-bin, XU Wei. High-throughput Screening System for Functional R-loop Loci Based on R-loop Targeted Editing Technology [J]. Biotechnology Bulletin, 2024, 40(10): 181-190. |
| [13] | LIU Xing-yu, LI Jie, ZHU Long-jiao, LI Xiang-yang, XU Wen-tao. Aptamer of Pseudomonas aeruginosa: Acquiring and Application [J]. Biotechnology Bulletin, 2024, 40(1): 186-193. |
| [14] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
| [15] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||