Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 113-124.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0298
Previous Articles Next Articles
ZHAO Zheng-yang1(), XIE Bing-yan2, CHENG Xin-yue3, LI Hui-xia1()
Received:
2024-03-27
Online:
2024-11-26
Published:
2024-12-19
Contact:
LI Hui-xia
E-mail:zyzhao2019@163.com;lihx@gsau.edu.cn
ZHAO Zheng-yang, XIE Bing-yan, CHENG Xin-yue, LI Hui-xia. Progress in the Mining and Utilization of Insect-associated Actinomycete Resources[J]. Biotechnology Bulletin, 2024, 40(11): 113-124.
[1] | Misof B, Liu SL, Meusemann K, et al. Phylogenomics resolves the timing and pattern of insect evolution[J]. Science, 2014, 346(6210): 763-767. |
[2] | Basset Y, Cizek L, Cuénoud P, et al. Arthropod diversity in a tropical forest[J]. Science, 2012, 338(6113): 1481-1484. |
[3] | Buchner P. Endosymbiose der Tiere mit Pflanzlichen Mikroorganismen[M]. Basel: Birkhäuser Basel, 1953. |
[4] | Matarrita-Carranza B, Murillo-Cruz C, Avendaño R, et al. Streptomy-ces sp. M54: an Actinobacteria associated with a neotropical social wasp with high potential for antibiotic production[J]. Antonie Van Leeuwenhoek, 2021, 114(4): 379-398. |
[5] | Usman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: current status, challenges and future opportunities[J]. Sci Total Environ, 2020, 721: 137778. |
[6] | Sheehan G, Garvey A, Croke M, et al. Innate humoral immune defences in mammals and insects: the same, with differences?[J]. Virulence, 2018, 9(1): 1625-1639. |
[7] | Van Arnam EB, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses[J]. Chem Soc Rev, 2018, 47(5): 1638-1651. |
[8] | Nechitaylo TY, Sandoval-Calderón M, Engl T, et al. Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont[J]. Proc Natl Acad Sci USA, 2021, 118(17): e2023047118. |
[9] | Donald L, Pipite A, Subramani R, et al. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective[J]. Microbiol Res, 2022, 13(3): 418-465. |
[10] | Genilloud O. Actinomycetes: still a source of novel antibiotics[J]. Nat Prod Rep, 2017, 34(10): 1203-1232. |
[11] | Van Moll L, De Smet J, Cos P, et al. Microbial symbionts of insects as a source of new antimicrobials: a review[J]. Crit Rev Microbiol, 2021, 47(5): 562-579. |
[12] | Chevrette MG, Carlson CM, Ortega HE, et al. The antimicrobial potential of Streptomyces from insect microbiomes[J]. Nat Commun, 2019, 10(1): 516. |
[13] | Poulsen M, Oh DC, Clardy J, et al. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery[J]. PLoS One, 2011, 6(2): e16763. |
[14] | Matsui T, Tanaka J, Namihira T, et al. Antibiotics production by an actinomycete isolated from the termite gut[J]. J Basic Microbiol, 2012, 52(6): 731-735. |
[15] | 尹彩萍, 白雪妍, Naeem ABBAS, 等. 黑翅土白蚁肠道放线菌菌株BYC-18及其抗菌代谢产物的分离鉴定[J]. 昆虫学报, 2023, 66(10): 1282-1288. |
Yin CP, Bai XY, Abbas N, et al. Isolation and identification of actinomycete strain BYC-18 and its antimicrobial metabolites from the gut of Odontotermes formosanus(Isoptera: Termitidae)[J]. Acta Entomol Sin, 2023, 66(10): 1282-1288. | |
[16] | Wang WQ, Xiao GL, Du GZ, et al. Glutamicibacter halophytocola-mediated host fitness of potato tuber moth on Solanaceae crops[J]. Pest Manag Sci, 2022, 78(9): 3920-3930. |
[17] | Cheng P, Xu K, Chen YC, et al. Cytotoxic aromatic polyketides from an insect derived Streptomyces sp. NA4286[J]. Tetrahedron Lett, 2019, 60(26): 1706-1709. |
[18] | Kroiss J, Kaltenpoth M, Schneider B, et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring[J]. Nat Chem Biol, 2010, 6(4): 261-263. |
[19] | Koehler S, Doubský J, Kaltenpoth M. Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring[J]. Front Zool, 2013, 10(1): 3. |
[20] | Moore SJ, Lai HG, Chee SM, et al. A Streptomyces venezuelae cell-free toolkit for synthetic biology[J]. ACS Synth Biol, 2021, 10(2): 402-411. |
[21] | Haeder S, Wirth R, Herz H, et al. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis[J]. Proc Natl Acad Sci USA, 2009, 106(12): 4742-4746. |
[22] | Dhodary B, Spiteller D. Ammonia production by Streptomyces symbionts of Acromyrmex leaf-cutting ants strongly inhibits the fungal pathogen Escovopsis[J]. Microorganisms, 2021, 9(8): 1622. |
[23] | Gutierrez-Espinoza CA, León-Quispe J. Actinomyces with anti-candida activity isolated from leaf-cutting ants Atta cephalotes(Formicidae: Myrmicinae: Attini)[J]. Rev Peru Med Exp Salud Publica, 2018, 35(4): 590-598. |
[24] | Chang PT, Rao K, Longo LO, et al. Thiopeptide defense by an ant's bacterial symbiont[J]. J Nat Prod, 2020, 83(3): 725-729. |
[25] | Zucchi TD, Guidolin AS, Cônsoli FL. Isolation and characterization of Actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus(Hymenoptera, Formicidae)[J]. Microbiol Res, 2011, 166(1): 68-76. |
[26] | Scott JJ, Oh DC, Yuceer MC, et al. Bacterial protection of beetle-fungus mutualism[J]. Science, 2008, 322(5898): 63. |
[27] | Blodgett JAV, Oh DC, Cao SG, et al. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria[J]. Proc Natl Acad Sci USA, 2010, 107(26): 11692-11697. |
[28] | Santamaría RI, Martínez-Carrasco A, Sánchez de la Nieta R, et al. Characterization of actinomycetes strains isolated from the intestinal tract and feces of the larvae of the longhorn beetle Cerambyx welensii[J]. Microorganisms, 2020, 8(12): 2013. |
[29] | Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading[J]. J Antibiot, 2012, 65(8): 385-395. |
[30] | Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics[J]. Clin Infect Dis, 2013, 56(10): 1445-1450. |
[31] | Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis[J]. Nat Prod Rep, 2009, 26(5): 628-660. |
[32] | Hopwood DA. Streptomyces in nature and medicine: the antibiotic makers[M]. Oxford: Oxford University Press, 2007 |
[33] | van der Heul HU, Bilyk BL, McDowall KJ, et al. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era[J]. Nat Prod Rep, 2018, 35(6): 575-604. |
[34] | Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of Actinobacteria[J]. Microbiol Mol Biol Rev, 2016, 80(1): 1-43. |
[35] | Qin ZW, Munnoch JT, Devine R, et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants[J]. Chem Sci, 2017, 8(4): 3218-3227. |
[36] | Ramachandran GN, Sasisekharan V. Conformation of polypeptides and proteins[J]. Adv Protein Chem, 1968, 23: 283-438. |
[37] | Kricheldorf HR. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides[J]. Angew Chem Int Ed, 2006, 45(35): 5752-5784. |
[38] | Chatterjee S, Roy RS, Balaram P. Expanding the polypeptide backbone: hydrogen-bonded conformations in hybrid polypeptides containing the higher homologues of alpha-amino acids[J]. J R Soc Interface, 2007, 4(15): 587-606. |
[39] | Muttenthaler M, King GF, Adams DJ, et al. Trends in peptide drug discovery[J]. Nat Rev Drug Discov, 2021, 20(4): 309-325. |
[40] | Lee SR, Lee D, Yu JS, et al. Natalenamides A-C, cyclic tripeptides from the termite-associated Actinomadura sp. RB99[J]. Molecules, 2018, 23(11): 3003. |
[41] | Benndorf R, Guo HJ, Sommerwerk E, et al. Natural products from Actinobacteria associated with fungus-growing termites[J]. Antibiotics, 2018, 7(3): 83. |
[42] | Hwang S, Le LTHL, Jo SI, et al. Pentaminomycins C-E: cyclic pentapeptides as autophagy inducers from a mealworm beetle gut bacterium[J]. Microorganisms, 2020, 8(9): 1390. |
[43] | Jiang SW, Piao CY, Yu Y, et al. Streptomyces capitiformicae sp. nov., a novel actinomycete producing angucyclinone antibiotics isolated from the head of Camponotus japonicus Mayr[J]. Int J Syst Evol Microbiol, 2018, 68(1): 118-124. |
[44] | Yin CP, Jin LP, Li S, et al. Diversity and antagonistic potential of Actinobacteria from the fungus-growing termite Odontotermes formosanus[J]. 3 Biotech, 2019, 9(2): 45. |
[45] | Schoenian I, Spiteller M, Ghaste M, et al. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants[J]. Proc Natl Acad Sci USA, 2011, 108(5): 1955-1960. |
[46] | Shin YH, Bae S, Sim J, et al. Nicrophorusamides A and B, antibacterial chlorinated cyclic peptides from a gut bacterium of the carrion beetle Nicrophorus concolor[J]. J Nat Prod, 2017, 80(11): 2962-2968. |
[47] | Menegatti C, Lourenzon VB, Rodríguez-Hernández D, et al. Meliponamycins: antimicrobials from stingless bee-associated Streptomyces sp[J]. J Nat Prod, 2020, 83(3): 610-616. |
[48] | Shin YH, Ban YH, Kim TH, et al. Structures and biosynthetic pathway of coprisamides C and D, 2-alkenylcinnamic acid-containing peptides from the gut bacterium of the carrion beetle Silpha perforata[J]. J Nat Prod, 2021, 84(2): 239-246. |
[49] | Oh DC, Poulsen M, Currie CR, et al. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis[J]. Nat Chem Biol, 2009, 5(6): 391-393. |
[50] | Sit CS, Ruzzini AC, Van Arnam EB, et al. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants[J]. Proc Natl Acad Sci USA, 2015, 112(43): 13150-13154. |
[51] | Wyche TP, Ruzzini AC, Beemelmanns C, et al. Linear peptides are the major products of a biosynthetic pathway that encodes for cyclic depsipeptides[J]. Org Lett, 2017, 19(7): 1772-1775. |
[52] | Joo SH. Cyclic peptides as therapeutic agents and biochemical tools[J]. Biomol Ther, 2012, 20(1): 19-26. |
[53] | Bitzer J, Streibel M, Langer HJ, et al. First Y-type actinomycins from Streptomyces with divergent structure-activity relationships for antibacterial and cytotoxic properties[J]. Org Biomol Chem, 2009, 7(3): 444-450. |
[54] | Davis WR, Gabbara S, Hupe D, et al. Actinomycin D inhibition of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase and nucleocapsid protein[J]. Biochemistry, 1998, 37(40): 14213-14221. |
[55] | Lu DD, Ren JW, Du QQ, et al. p-Terphenyls and actinomycins from a Streptomyces sp. associated with the larva of mud dauber wasp[J]. Nat Prod Res, 2021, 35(11): 1869-1873. |
[56] | Song YJ, Zheng HB, Peng AH, et al. Strepantibins A-C: hexokinase II inhibitors from a mud dauber wasp associated Streptomyces sp[J]. J Nat Prod, 2019, 82(5): 1114-1119. |
[57] | Hill CR, Jamieson D, Thomas HD, et al. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo[J]. Biochem Pharmacol, 2013, 85(1): 29-37. |
[58] | Shin YH, Ban YH, Shin J, et al. Azetidine-bearing non-ribosomal peptides, bonnevillamides D and E, isolated from a carrion beetle-associated actinomycete[J]. J Org Chem, 2021, 86(16): 11149-11159. |
[59] | Fukuda TTH, Helfrich EJN, Mevers E, et al. Specialized metabolites reveal evolutionary history and geographic dispersion of a multilateral symbiosis[J]. ACS Cent Sci, 2021, 7(2): 292-299. |
[60] | Carr G, Poulsen M, Klassen JL, et al. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin[J]. Org Lett, 2012, 14(11): 2822-2825. |
[61] | Beemelmanns C, Ramadhar TR, Kim KH, et al. Macrotermycins A-D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39[J]. Org Lett, 2017, 19(5): 1000-1003. |
[62] | Xiao YS, Zhang B, Zhang M, et al. Rifamorpholines A-E, potential antibiotics from locust-associated Actinobacteria Amycolatopsis sp. Hca4[J]. Org Biomol Chem, 2017, 15(18): 3909-3916. |
[63] | Oh DC, Poulsen M, Currie CR, et al. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp[J]. Org Lett, 2011, 13(4): 752-755. |
[64] | Malmierca MG, Pérez-Victoria I, Martín J, et al. Cooperative involvement of glycosyltransferases in the transfer of amino sugars during the biosynthesis of the macrolactam sipanmycin by Streptomyces sp. strain CS149[J]. Appl Environ Microbiol, 2018, 84(18): e01462-e01418. |
[65] | Shin YH, Beom JY, Chung B, et al. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori[J]. Org Lett, 2019, 21(6): 1804-1808. |
[66] | 曹莹莹. 链霉菌CJ0806次级代谢产物及抗乳腺癌活性研究[D]. 济南: 山东大学, 2023. |
Cao YY. Study on the secondary metabolites of Streptomyces sp. CJ0806 and its anti-breast cancer activity[D]. Ji'nan: Shandong University, 2023. | |
[67] | Long YH, Zhang Y, Huang F, et al. Diversity and antimicrobial activities of culturable actinomycetes from Odontotermes formosanus(Blattaria: Termitidae)[J]. BMC Microbiol, 2022, 22(1): 80. |
[68] | Rohr J, Thiericke R. Angucycline group antibiotics[J]. Nat Prod Rep, 1992, 9(2): 103-137. |
[69] | Guo ZK, Wang T, Guo Y, et al. Cytotoxic angucyclines from Amycolatopsis sp. HCa1, a rare Actinobacteria derived from Oxya chinensis[J]. Planta Med, 2011, 77(18): 2057-2060. |
[70] | Zhang YL, Li S, Jiang DH, et al. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02[J]. J Agric Food Chem, 2013, 61(7): 1521-1524. |
[71] | Seipke RF, Hutchings MI. The regulation and biosynthesis of antimycins[J]. Beilstein J Org Chem, 2013, 9: 2556-2563. |
[72] | 卢贻会, 李帅, 周端顼, 等. 白蚁巢拮抗放线菌BYC01代谢产物的分离和鉴定[J]. 微生物学报, 2014, 54(7): 754-759. |
Lu YH, Li S, Zhou DX, et al. Isolation and identification of termitarium antagonistic actinomycetes BYC 01 and its active metabolites[J]. Acta Microbiol Sin, 2014, 54(7): 754-759. | |
[73] | Zhang L, Song T, Wu J, et al. Antibacterial and cytotoxic metabolites of termite-associated Streptomyces sp. BYF63[J]. J Antibiot, 2020, 73(11): 766-771. |
[74] | Rodríguez-Hernández D, Melo WGP, Menegatti C, et al. Actinobacteria associated with stingless bees biosynthesize bioactive polyketides against bacterial pathogens[J]. New J Chem, 2019, 43(25): 10109-10117. |
[75] | Grubbs KJ, Surup F, Biedermann PHW, et al. Cycloheximide-producing Streptomyces associated with Xyleborinus saxesenii and Xyleborus affinis fungus-farming Ambrosia beetles[J]. Front Microbiol, 2020, 11: 562140. |
[76] | Rak Lee S, Schalk F, Schwitalla JW, et al. Polyhalogenation of isoflavonoids by the termite-associated Actinomadura sp. RB99[J]. J Nat Prod, 2020, 83(10): 3102-3110. |
[77] | Bi SF, Guo ZK, Jiang N, et al. New alkaloid from Streptomyces koyangensis residing in Odontotermes formosanus[J]. J Asian Nat Prod Res, 2013, 15(4): 422-425. |
[78] | Bi SF, Li F, Song YC, et al. New acrylamide and oxazolidin derivatives from a termite-associated Streptomyces sp[J]. Nat Prod Commun, 2011, 6(3): 353-355. |
[79] | DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446. |
[80] | Kim SH, Kwon SH, Park SH, et al. Tripartin, a histone demethylase inhibitor from a bacterium associated with a dung beetle larva[J]. Org Lett, 2013, 15(8): 1834-1837. |
[81] | Kang HR, Lee D, Benndorf R, et al. Termisoflavones A-C, isoflavonoid glycosides from termite-associated Streptomyces sp. RB1[J]. J Nat Prod, 2016, 79(12): 3072-3078. |
[82] | Currie CR, Mueller UG, Malloch D. The agricultural pathology of ant fungus gardens[J]. Proc Natl Acad Sci USA, 1999, 96(14): 7998-8002. |
[83] | Liu ZY, Ishikawa K, Sanada E, et al. Identification of antimycin A as a c-Myc degradation accelerator via high-throughput screening[J]. J Biol Chem, 2023, 299(9): 105083. |
[84] | Vanner SA, Li X, Zvanych R, et al. Chemical and biosynthetic evolution of the antimycin-type depsipeptides[J]. Mol Biosyst, 2013, 9(11): 2712-2719. |
[85] | Jana S, Heaven MR, Dahiya N, et al. Antimicrobial 405 nm violet-blue light treatment of ex vivo human platelets leads to mitochondrial metabolic reprogramming and potential alteration of Phospho-proteome[J]. J Photochem Photobiol B, 2023, 241: 112672. |
[86] | Han YH, Kim SH, Kim SZ, et al. Antimycin A as a mitochondria damage agent induces an S phase arrest of the cell cycle in HeLa cells[J]. Life Sci, 2008, 83(9/10): 346-355. |
[87] | Mendes TD, Borges WS, Rodrigues A, et al. Anti-Candida properties of urauchimycins from Actinobacteria associated with trachymyrmex ants[J]. Biomed Res Int, 2013, 2013: 835081. |
[88] | Ortega HE, Ferreira LLG, Melo WGP, et al. Antifungal compounds from Streptomyces associated with attine ants also inhibit Leishmania donovani[J]. PLoS Negl Trop Dis, 2019, 13(8): e0007643. |
[89] | Ortega HE, Lourenzon VB, Chevrette MG, et al. Antileishmanial macrolides from ant-associated Streptomyces sp. ISID311[J]. Bioorg Med Chem, 2021, 32: 116016. |
[90] | Barke J, Seipke RF, Grüschow S, et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus[J]. BMC Biol, 2010, 8: 109. |
[91] | Van Arnam EB, Ruzzini AC, Sit CS, et al. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts[J]. Proc Natl Acad Sci USA, 2016, 113(46): 12940-12945. |
[92] | Pandey RC, Narasimhachari N, Rinehart KL Jr, et al. Polyene antibiotics. IV. structure of Chainin[J]. J Am Chem Soc, 1972, 94(12): 4306-4310. |
[93] | Gao H, Grüschow S, Barke J, et al. Filipins: the first antifungal “weed killers” identified from bacteria isolated from the trap-ant[J]. RSC Adv, 2014, 4(100): 57267-57270. |
[94] | Li JJ, Sang ML, Jiang YT, et al. Polyene-producing Streptomyces spp. from the fungus-growing termite Macrotermes barneyi exhibit high inhibitory activity against the antagonistic fungus Xylaria[J]. Front Microbiol, 2021, 12: 649962. |
[95] | Cao TT, Mu S, Lu C, et al. Streptomyces amphotericinicus sp. nov., an amphotericin-producing actinomycete isolated from the head of an ant(Camponotus japonicus Mayr)[J]. Int J Syst Evol Microbiol, 2017, 67(12): 4967-4973. |
[96] | Qiao LQ, Dong Y, Zhou HL, et al. Effect of post-polyketide synthase modification groups on property and activity of polyene macrolides[J]. Antibiotics, 2023, 12(1): 119. |
[97] | Kim KH, Ramadhar TR, Beemelmanns C, et al. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp[J]. Chem Sci, 2014, 5(11): 4333-4338. |
[98] | Gui M, Zhang MX, Wu WH, et al. Natural occurrence, bioactivity and biosynthesis of elaiophylin analogues[J]. Molecules, 2019, 24(21): 3840. |
[99] | Klassen JL, Lee SR, Poulsen M, et al. Efomycins K and L from a termite-associated Streptomyces sp. M56 and their putative biosynthetic origin[J]. Front Microbiol, 2019, 10: 1739. |
[100] | An JS, Lee JY, Kim E, et al. Formicolides A and B, antioxidative and antiangiogenic 20-membered macrolides from a wood ant gut bacterium[J]. J Nat Prod, 2020, 83(9): 2776-2784. |
[101] | An JS, Lim HJ, Lee JY, et al. Hamuramicin C, a cytotoxic bicyclic macrolide isolated from a wasp gut bacterium[J]. J Nat Prod, 2022, 85(4): 936-942. |
[102] | Yan YM, Li X, Zhang CH, et al. Research progress on antibacterial activities and mechanisms of natural alkaloids: a review[J]. Antibiotics, 2021, 10(3): 318. |
[103] | Schäfer H, Wink M. Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis[J]. Biotechnol J, 2009, 4(12): 1684-1703. |
[104] | Um S, Bach DH, Shin B, et al. Naphthoquinone-oxindole alkaloids, coprisidins A and B, from a gut-associated bacterium in the dung beetle, Copris tripartitus[J]. Org Lett, 2016, 18(22): 5792-5795. |
[105] | 曾还雄. 两株蜚蠊肠道内生放线菌次级代谢产物的初步研究[D]. 广州: 广东药科大学, 2019. |
Zeng HX. Preliminary study on secondary metabolites of two cockroach gut endophytic actinomycetes[D]. Guangzhou: Guangdong Pharmaceutical University, 2019. | |
[106] | Hong SH, Ban YH, Byun WS, et al. Camporidines A and B: antimetastatic and anti-inflammatory polyketide alkaloids from a gut bacterium of Camponotus kiusiuensis[J]. J Nat Prod, 2019, 82(4): 903-910. |
[107] | Guo HJ, Benndorf R, Leichnitz D, et al. Isolation, biosynthesis and chemical modifications of rubterolones A-F: rare tropolone alkaloids from Actinomadura sp. 5-2[J]. Chemistry, 2017, 23(39): 9338-9345. |
[108] | Guo HJ, Benndorf R, König S, et al. Expanding the rubterolone family: intrinsic reactivity and directed diversification of PKS-derived pyrans[J]. Chemistry, 2018, 24(44): 11319-11324. |
[109] | Zakalyukina YV, Birykov MV, Lukianov DA, et al. Nybomycin-producing Streptomyces isolated from carpenter ant Camponotus vagus[J]. Biochimie, 2019, 160: 93-99. |
[110] | Lin ZH, Xu XB, Zhao S, et al. Total synthesis and antimicrobial evaluation of natural albomycins against clinical pathogens[J]. Nat Commun, 2018, 9(1): 3445. |
[111] | Zakalyukina YV, Pavlov NA, Lukianov DA, et al. A new albomycin-producing strain of Streptomyces globisporus subsp. globisporus may provide protection for ants Messor structor[J]. Insects, 2022, 13(11): 1042. |
[112] | Kim SH, Ko H, Bang HS, et al. Coprismycins A and B, neuroprotective phenylpyridines from the dung beetle-associated bacterium, Streptomyces sp[J]. Bioorg Med Chem Lett, 2011, 21(19): 5715-5718. |
[113] | Zhou LF, Wu J, Li S, et al. Antibacterial potential of termite-associated Streptomyces spp[J]. ACS Omega, 2021, 6(6): 4329-4334. |
[114] | Prado-Alonso L, Pérez-Victoria I, Malmierca MG, et al. Colibrimycins, novel halogenated hybrid polyketide synthase-nonribosomal peptide synthetase(PKS-NRPS)compounds produced by Streptomyces sp. strain CS147[J]. Appl Environ Microbiol, 2022, 88(1): e0183921. |
[115] | Van Arnam EB, Ruzzini AC, Sit CS, et al. A rebeccamycin analog provides plasmid-encoded niche defense[J]. J Am Chem Soc, 2015, 137(45): 14272-14274. |
[116] | van der Meij A, Worsley SF, Hutchings MI, et al. Chemical ecology of antibiotic production by actinomycetes[J]. FEMS Microbiol Rev, 2017, 41(3): 392-416. |
[117] | Diarra U, Osborne-Naikatini T, Subramani R. Actinomycetes associated with hymenopteran insects: a promising source of bioactive natural products[J]. Front Microbiol, 2024, 15: 1303010. |
[118] | Kaltenpoth M, Schmitt T, Polidori C, et al. Symbiotic streptomycetes in antennal glands of the South American digger wasp genus Trachypus(Hymenoptera, Crabronidae)[J]. Physiol Entomol, 2010, 35(2): 196-200. |
[119] | Kaltenpoth M, Göttler W, Herzner G, et al. Symbiotic bacteria protect wasp larvae from fungal infestation[J]. Curr Biol, 2005, 15(5): 475-479. |
[120] | Seipke RF, Barke J, Brearley C, et al. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus[J]. PLoS One, 2011, 6(8): e22028. |
[121] | Baranova AA, Zakalyukina YV, Ovcharenko AA, et al. Antibiotics from insect-associated Actinobacteria[J]. Biology, 2022, 11(11): 1676. |
[122] | Kaltenpoth M, Engl T. Defensive microbial symbionts in Hymenoptera[J]. Funct Ecol, 2014, 28(2): 315-327. |
[123] | Yarzábal LA, Salazar LMB, Batista-García RA. Climate change, melting cryosphere and frozen pathogens: should we worry…?[J]. Environ Sustain(Singap), 2021, 4(3): 489-501. |
[124] | Ma CC, Wang ZL, Xu T, et al. The approved gene therapy drugs worldwide: from 1998 to 2019[J]. Biotechnol Adv, 2020, 40: 107502. |
[125] | Berdy B, Spoering AL, Ling LL, et al. In situ cultivation of previously uncultivable microorganisms using the ichip[J]. Nat Protoc, 2017, 12(10): 2232-2242. |
[126] | Sudakaran S, Salem H, Kost C, et al. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus(Hemiptera, Pyrrhocoridae)[J]. Mol Ecol, 2012, 21(24): 6134-6151. |
[1] | PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet [J]. Biotechnology Bulletin, 2024, 40(4): 33-39. |
[2] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[3] | KANG Xiao-bo, ZHANG Jing-xi, LU Tian-tian, LIU Ya-yue, ZHOU Long-jian, ZHANG Yi. Variation of Bioactivities and Secondary Metabolomics of Marine Fungus Aspergillus unguis DLEP2008001 Cultured under Different Salinities [J]. Biotechnology Bulletin, 2024, 40(11): 296-311. |
[4] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[5] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[6] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[7] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[8] | ZHANG Hong-yan, GAO qing, ZHANG Lin-yuan, LIN Guo-li, LI Ru-lian. Screening of Actinomycetes Against Phytophthora Root Rot of Soybean and Its Growth Promotion and Disease Control [J]. Biotechnology Bulletin, 2020, 36(10): 25-31. |
[9] | LI Lin-chao, ZHANG Chao, DONG Qing, GUO Cheng, ZHOU Bo, GAO Zheng. Isolation and Identification of Cellulose Degrading Microorganisms in Composting Process [J]. Biotechnology Bulletin, 2019, 35(9): 165-171. |
[10] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[11] | PAN Jie-ming ,ZHANG Rong-yi ,DENG Jia-ai ,TAN Zhi-qiong. Isolation and Screening of Anti-MRSA Actinomycetes in the Soil from the Primitive Tropical Rainforest Yingge Ridge [J]. Biotechnology Bulletin, 2018, 34(6): 128-133. |
[12] | ZENG Huan-xiong, FANG Xia, LIU Ling-yan, JIN Xiao-bao. Screening and Identification of Actinomycetes with Antifungal Activity from the Guts of Periplaneta americana [J]. Biotechnology Bulletin, 2018, 34(12): 147-151. |
[13] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[14] | GUAN Gui-jing, ZHAO Heng-yan, WANG Hong-su, LIU Jin-xiang. Effects of Virus-Plant Interaction on Biological Characteristics of Insects as Vectors [J]. Biotechnology Bulletin, 2017, 33(4): 44-50. |
[15] | QU Jia, ZHAO Ling-xia, CHEN Rui, LU Peng-peng, SUN Xiao-yu, SHEN Wei-rong. Screening of Anti-Tuberculosis Marine Actinomycetes and the Bioactivity of Strain HY286 [J]. Biotechnology Bulletin, 2017, 33(11): 194-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||