Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (7): 69-80.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0061
Previous Articles Next Articles
HOU Ying-xiang1(
), FEI Si-tian1, LI Ni2,3, LI Lan4, SONG Song-quan1, WANG Wei-ping2,3(
), ZHANG Chao1(
)
Received:2025-01-14
Online:2025-07-26
Published:2025-07-22
Contact:
WANG Wei-ping, ZHANG Chao
E-mail:450501341@qq.com;wangweiping@hhrrc.ac.cn;ricezhangchao@xnu.edu.cn
HOU Ying-xiang, FEI Si-tian, LI Ni, LI Lan, SONG Song-quan, WANG Wei-ping, ZHANG Chao. Research Progress in Response of Rice miRNAs to Biotic Stress[J]. Biotechnology Bulletin, 2025, 41(7): 69-80.
Fig. 2 Schematic diagrams of regulatory mechanisms of rice miRNAs in resistance to various pests and diseasesA: Rice miRNAs regulate bacterial blight resistance. B: Rice miRNAs regulate sheath blight resistance. C: Rice miRNAs regulate brown planthopper resistance. D: Rice miRNAs regulate rice virus disease resistance
| [16] | Campo S, Peris-Peris C, Siré C, et al. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance [J]. New Phytol, 2013, 199(1): 212-227. |
| [17] | Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, et al. Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice [J]. Mol Plant Microbe Interact, 2017, 30(5): 385-398. |
| [18] | Sánchez-Sanuy F, Peris-Peris C, Tomiyama S, et al. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus [J]. BMC Plant Biol, 2019, 19(1): 563. |
| [19] | Li Y, Lu YG, Shi Y, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae [J]. Plant Physiol, 2014, 164(2): 1077-1092. |
| [20] | Li Y, Cao XL, Zhu Y, et al. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases [J]. New Phytol, 2019, 222(3): 1507-1522. |
| [21] | Feng Q, Wang H, Yang XM, et al. Osa-miR160a confers broad-spectrum resistance to fungal and bacterial pathogens in rice [J]. New Phytol, 2022, 236(6): 2216-2232. |
| [22] | Sheng C, Yu DL, Li X, et al. OsAPX1 positively contributes to rice blast resistance [J]. Front Plant Sci, 2022, 13: 843271. |
| [23] | Wang H, Wang ZX, Tian HY, et al. The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice [J]. Mol Plant, 2025, 18(1): 59-75. |
| [24] | Ichimaru K, Yamaguchi K, Harada K, et al. Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity [J]. Nat Commun, 2022, 13(1): 2397. |
| [25] | Cheng XL, He Q, Tang S, et al. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops [J]. New Phytol, 2021, 230(3): 1017-1033. |
| [26] | Li WT, Wang K, Chern M, et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves [J]. New Phytol, 2020, 226(6): 1850-1863. |
| [27] | Li XP, Ma XC, Wang H, et al. Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and Yield [J]. Rice, 2020, 13(1): 38. |
| [28] | Zhang DD, Liu MX, Tang MZ, et al. Repression of microRNA biogenesis by silencing of OsDCL1 activates the basal resistance to Magnaporthe oryzae in rice [J]. Plant Sci, 2015, 237: 24-32. |
| [29] | Barik S, SarkarDas S, Singh A, et al. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species [J]. Genomics, 2014, 103(1): 114-121. |
| [30] | Baldrich P, Hsing YC, San Segundo B. Genome-wide analysis of polycistronic microRNAs in cultivated and wild rice [J]. Genome Biol Evol, 2016, 8(4): 1104-1114. |
| [31] | Salvador-Guirao R, Hsing YI, San Segundo B. The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2 [J]. Front Plant Sci, 2018, 9: 337. |
| [32] | Yang C, Li W, Cao JD, et al. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice [J]. Plant J, 2017, 89(2): 338-353. |
| [33] | Qiu JH, Liu ZQ, Xie JH, et al. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice [J]. Plant Cell Environ, 2022, 45(12): 3399-3411. |
| [34] | Chen JF, Zhao ZX, Li Y, et al. Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and development [J]. Rice, 2021, 14(1): 26. |
| [35] | Campo S, Sánchez-Sanuy F, Camargo-Ramírez R, et al. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease [J]. Plant Biotechnol J, 2021, 19(9): 1798-1811. |
| [36] | Wang H, Li Y, Chern M, et al. Suppression of rice miR168 improves yield, flowering time and immunity [J]. Nat Plants, 2021, 7(2): 129-136. |
| [37] | Zhao BT, Liang RQ, Ge LF, et al. Identification of drought-induced microRNAs in rice [J]. Biochem Biophys Res Commun, 2007, 354(2): 585-590. |
| [38] | Zhao BT, Ge LF, Liang RQ, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor [J]. BMC Mol Biol, 2009, 10: 29. |
| [39] | Li Y, Zhao SL, Li JL, et al. Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae [J]. Front Plant Sci, 2017, 8: 2. |
| [1] | Zhan JP, Meyers BC. Plant small RNAs: their biogenesis, regulatory roles, and functions [J]. Annu Rev Plant Biol, 2023, 74: 21-51. |
| [2] | Wang JL, Mei J, Ren GD. Plant microRNAs: biogenesis, homeostasis, and degradation [J]. Front Plant Sci, 2019, 10: 360. |
| [3] | Xie DQ, Chen M, Niu JR, et al. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis [J]. Nat Cell Biol, 2021, 23(1): 32-39. |
| [4] | Mi SJ, Cai T, Hu YG, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide [J]. Cell, 2008, 133(1): 116-127. |
| [5] | Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing [J]. Nat Rev Mol Cell Biol, 2008, 9(1): 22-32. |
| [6] | Jiang JJ, Zhu HT, Li N, et al. The miR393-target module regulates plant development and responses to biotic and abiotic stresses [J]. Int J Mol Sci, 2022, 23(16): 9477. |
| [7] | Jing WK, Gong FF, Liu GQ, et al. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida [J]. Nat Commun, 2023, 14(1): 7106. |
| [8] | Li YY, Liu Y, Gao ZH, et al. microRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato [J]. Front Plant Sci, 2023, 14: 1045112. |
| [9] | Pawłasek N, Sokołowska A, Koter M, et al. The interaction between miR165/166 and miR160 regulates Arabidopsis thaliana seed size, weight, and number in a ROS-dependent manner [J]. Planta, 2024, 260(3): 72. |
| [10] | 李有志, 方继朝. 水稻害虫: 研究进展与展望 [J]. 昆虫学报, 2024, 67(4): 443-455. |
| Li YZ, Fang JC. Rice pests: research progresses and prospects [J]. Acta Entomol Sin, 2024, 67(4): 443-455. | |
| [11] | 刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析 [J]. 植物保护, 2016, 42(5): 1-9, 46. |
| Liu WC, Liu ZD, Huang C, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years [J]. Plant Prot, 2016, 42(5): 1-9, 46. | |
| [40] | Wang ZY, Xia YQ, Lin SY, et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae [J]. Plant J, 2018, 95(4): 584-597. |
| [41] | Zhang X, Bao YL, Shan DQ, et al. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice [J]. Plant Physiol, 2018, 177(1): 352-368. |
| [42] | Zhao ZX, Feng Q, Cao XL, et al. Osa-miR167d facilitates infection of Magnaporthe oryzae in rice [J]. J Integr Plant Biol, 2020, 62(5): 702-715. |
| [43] | Gao S, Hou Y, Huang QW, et al. Osa-miR11117 targets OsPAO4 to regulate rice immunity against the blast fungus Magnaporthe oryzae [J]. Int J Mol Sci, 2023, 24(22): 16052. |
| [44] | Guo RZ, Zhang Q, Ying YH, et al. Functional characterization of the three Oryza sativa SPX-MFS proteins in maintaining phosphate homoeostasis [J]. Plant Cell Environ, 2023, 46(4): 1264-1277. |
| [45] | Campos-Soriano L, Bundó M, Bach-Pages M, et al. Phosphate excess increases susceptibility to pathogen infection in rice [J]. Mol Plant Pathol, 2020, 21(4): 555-570. |
| [46] | Bundó M, Val-Torregrosa B, Martín-Cardoso H, et al. Silencing Osa-miR827 via CRISPR/Cas9 protects rice against the blast fungus Magnaporthe oryzae [J]. Plant Mol Biol, 2024, 114(5): 105. |
| [47] | Nelson R, Wiesner-Hanks T, Wisser R, et al. Navigating complexity to breed disease-resistant crops [J]. Nat Rev Genet, 2018, 19(1): 21-33. |
| [48] | Wang J, Zhou L, Shi H, et al. A single transcription factor promotes both yield and immunity in rice [J]. Science, 2018, 361(6406): 1026-1028. |
| [49] | Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice [J]. Nat Genet, 2010, 42(6): 541-544. |
| [50] | Chandran V, Wang H, Gao F, et al. miR396- OsGRF s module balances growth and rice blast disease-resistance [J]. Front Plant Sci, 2019, 9: 1999. |
| [51] | Zhou SX, Zhu Y, Wang LF, et al. Osa-miR1873 fine-tunes rice immunity against Magnaporthe oryzae and yield traits [J]. J Integr Plant Biol, 2020, 62(8): 1213-1226. |
| [52] | Li Y, Li TT, He XR, et al. Blocking Osa-miR1871 enhances rice resistance against Magnaporthe oryzae and yield [J]. Plant Biotechnol J, 2022, 20(4): 646-659. |
| [53] | Li Y, Zheng YP, Zhou XH, et al. Rice miR1432 fine-tunes the balance of yield and blast disease resistance via different modules [J]. Rice, 2021, 14(1): 87. |
| [54] | Zhao YF, Peng T, Sun HZ, et al. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice [J]. Plant Biotechnol J, 2019, 17(4): 712-723. |
| [55] | Li Y, Wang LF, Bhutto SH, et al. Blocking miR530 improves rice resistance, yield, and maturity [J]. Front Plant Sci, 2021, 12: 729560. |
| [56] | Sun W, Xu XH, Li YP, et al. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice [J]. New Phytol, 2020, 226(3): 823-837. |
| [57] | Li YF, Zheng Y, Addo-Quaye C, et al. Transcriptome-wide identification of microRNA targets in rice [J]. Plant J, 2010, 62(5): 742-759. |
| [58] | Zhang LL, Huang YY, Zheng YP, et al. Osa-miR535 targets SQUAMOSA promoter binding protein-like 4 to regulate blast disease resistance in rice [J]. Plant J, 2022, 110(1): 166-178. |
| [59] | Fu J, Liu HB, Li Y, et al. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice [J]. Plant Physiol, 2011, 155(1): 589-602. |
| [60] | Yu C, Chen YT, Cao YQ, et al. Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice [J]. Plant Cell Physiol, 2018, 59(6): 1234-1247. |
| [61] | Liu MM, Shi ZY, Zhang XH, et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice [J]. Nat Plants, 2019, 5(4): 389-400. |
| [62] | Jia YF, Li QL, Li YY, et al. Inducible enrichment of Osa-miR1432 confers rice bacterial blight resistance through suppressing OsCaML2 [J]. Int J Mol Sci, 2021, 22(21): 11367. |
| [63] | Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors [J]. Science, 2009, 326(5959): 1501. |
| [64] | Molla KA, Karmakar S, Molla J, et al. Understanding sheath blight resistance in rice: the road behind and the road ahead [J]. Plant Biotechnol J, 2020, 18(4): 895-915. |
| [65] | Feng T, Zhang ZY, Gao P, et al. Suppression of rice Osa-miR444.2 improves the resistance to sheath blight in rice mediating through the phytohormone pathway [J]. Int J Mol Sci, 2023, 24(4): 3653. |
| [66] | Wu JG, Yang GY, Zhao SS, et al. Current rice production is highly vulnerable to insect-borne viral diseases [J]. Natl Sci Rev, 2022, 9(9): nwac131. |
| [67] | Wu JG, Yang RX, Yang ZR, et al. ROS accumulation and antiviral defence control by microRNA528 in rice [J]. Nat Plants, 2017, 3: 16203. |
| [68] | Wu JG, Yang ZR, Wang Y, et al. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA [J]. eLife, 2015, 4: e05733. |
| [69] | Yao SZ, Yang ZR, Yang RX, et al. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice [J]. Mol Plant, 2019, 12(8): 1114-1122. |
| [70] | Wang NN, Zhang D, Wang ZH, et al. Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice [J]. BMC Plant Biol, 2014, 14: 177. |
| [71] | Wang HC, Jiao XM, Kong XY, et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway [J]. Plant Physiol, 2016, 170(4): 2365-2377. |
| [72] | Tong AZ, Yuan Q, Wang S, et al. Altered accumulation of Osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms [J]. J Exp Bot, 2017, 68(15): 4357-4367. |
| [73] | Zhang C, Ding ZM, Wu KC, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice [J]. Mol Plant, 2016, 9(9): 1302-1314. |
| [74] | Liu YQ, Wu H, Chen H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice [J]. Nat Biotechnol, 2015, 33(3): 301-305. |
| [75] | Guo JP, Xu CX, Wu D, et al. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice [J]. Nat Genet, 2018, 50(2): 297-306. |
| [12] | 杨婕, 杨长登, 曾宇翔, 等. 水稻稻瘟病抗性基因挖掘与利用研究进展[J]. 中国水稻科学, 2024, 38(6): 591-603. |
| Yang J, Yang CD, Zeng YX, et al. Research progress in mining and utilization of rice blast resistance genes [J]. Chin J Rice Sci, 2024, 38(6): 591-603. | |
| [13] | Zhou B, Qu SH, Liu GF, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Mol Plant Microbe Interact, 2006, 19(11): 1216-1228. |
| [14] | Deng YW, Zhu XD, Shen Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety [J]. Theor Appl Genet, 2006, 113(4): 705-713. |
| [15] | Javed M, Reddy B, Sheoran N, et al. Unraveling the transcriptional network regulated by miRNAs in blast-resistant and blast-susceptible rice genotypes during Magnaporthe oryzae interaction [J]. Gene, 2023, 886: 147718. |
| [76] | Zhao Y, Huang J, Wang ZZ, et al. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation [J]. Proc Natl Acad Sci USA, 2016, 113(45): 12850-12855. |
| [77] | Shi SJ, Wang HY, Nie LY, et al. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths [J]. Mol Plant, 2021, 14(10): 1714-1732. |
| [78] | Ge YF, Han JY, Zhou GX, et al. Silencing of miR156 confers enhanced resistance to brown planthopper in rice [J]. Planta, 2018, 248(4): 813-826. |
| [79] | Li R, Zhang J, Li JC, et al. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores [J]. eLife, 2015, 4: e04805. |
| [80] | Dai ZY, Tan J, Zhou C, et al. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa) [J]. Plant Biotechnol J, 2019, 17(8): 1657-1669. |
| [81] | Chen S, Sun B, Shi ZY, et al. Identification of the rice genes and metabolites involved in dual resistance against brown planthopper and rice blast fungus [J]. Plant Cell Environ, 2022, 45(6): 1914-1929. |
| [82] | Shen YJ, Yang GQ, Miao XX, et al. OsmiR159 modulate BPH resistance through regulating G-protein γ subunit GS3 gene in rice [J]. Rice, 2023, 16(1): 30. |
| [83] | Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein [J]. Theor Appl Genet, 2006, 112(6): 1164-1171. |
| [84] | Chen J, Liu Q, Yuan LY, et al. Osa-miR162a enhances the resistance to the brown planthopper via α-linolenic acid metabolism in rice (Oryza sativa) [J]. J Agric Food Chem, 2023, 71(31): 11847-11859. |
| [85] | Sun B, Shen YJ, Zhu L, et al. OsmiR319-OsPCF5 modulate resistance to brown planthopper in rice through association with MYB proteins [J]. BMC Biol, 2024, 22(1): 68. |
| [86] | He J, Liu YQ, Yuan DY, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice [J]. Proc Natl Acad Sci USA, 2020, 117(1): 271-277. |
| [87] | Sun B, Shen YJ, Chen S, et al. A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3'H expression [J]. New Phytol, 2023, 239(2): 720-738. |
| [88] | Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens [J]. Science, 2009, 324(5928): 742-744. |
| [89] | Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors [J]. Annu Rev Plant Biol, 2009, 60: 379-406. |
| [90] | Zhang ZL, Wang XJ, Lu JB, et al. Cross-Kingdom RNA interference mediated by insect salivary microRNAs may suppress plant immunity [J]. Proc Natl Acad Sci USA, 2024, 121(16): e2318783121. |
| [1] | ZHANG Xue-qiong, PAN Su-jun, LI Wei, DAI Liang-ying. Research Progress of Plant Phosphate Transporters in the Response to Stress [J]. Biotechnology Bulletin, 2025, 41(7): 28-36. |
| [2] | HAN Yi, HOU Chang-lin, TANG Lu, SUN Lu, XIE Xiao-dong, LIANG Chen, CHEN Xiao-qiang. Cloning and Preliminary Functional Analysis of HvERECTA Gene in Hordeum vulgare [J]. Biotechnology Bulletin, 2025, 41(7): 106-116. |
| [3] | LI Xia, ZHANG Ze-wei, LIU Ze-jun, WANG Nan, GUO Jiang-bo, XIN Cui-hua, ZHANG Tong, JIAN Lei. Cloning and Functional Study of Transcription Factor StMYB96 in Potato [J]. Biotechnology Bulletin, 2025, 41(7): 181-192. |
| [4] | GONG Yu-han, CHEN Lan, SHANGFANG Hui-zi, HAO Ling-ying, LIU Shuo-qian. Identification and Expression Profile Analysis of the TRB Gene Family in Tea Plant [J]. Biotechnology Bulletin, 2025, 41(7): 214-225. |
| [5] | WEI Yu-jia, LI Yan, KANG Yu-han, GONG Xiao-nan, DU Min, TU Lan, SHI Peng, YU Zi-han, SUN Yan, ZHANG Kun. Cloning and Expression Analysis of the CrMYB4 Gene in Carex rigescens [J]. Biotechnology Bulletin, 2025, 41(7): 248-260. |
| [6] | WU Hao, DONG Wei-feng, HE Zi-tian, LI Yan-xiao, XIE Hui, SUN Ming-zhe, SHEN Yang, SUN Xiao-li. Genome-wide Identification and Expression Analysis of the Rice BXL Gene Family [J]. Biotechnology Bulletin, 2025, 41(6): 87-98. |
| [7] | HUANG Dan, PENG Bing-yang, ZHANG Pan-pan, JIAO Yue, LYU Jia-bin. Identification of HD-Zip Gene Family in Camellia oleifera and Analysis of Its Expression under Abiotic Stress [J]. Biotechnology Bulletin, 2025, 41(6): 191-207. |
| [8] | PENG Shao-zhi, WANG Deng-ke, ZHANG Xiang, DAI Xiong-ze, XU Hao, ZOU Xue-xiao. Cloning, Expression Characteristics and Functional Verification of the Pepper CaFD1 Gene [J]. Biotechnology Bulletin, 2025, 41(5): 153-164. |
| [9] | LIU Yuan-yuan, CHEN Xi-feng, QIAN Qian, GAO Zhen-yu. Advances in Molecular Mechanisms Regulating Panicle Development in Rice [J]. Biotechnology Bulletin, 2025, 41(5): 1-13. |
| [10] | DU Liang-heng, TANG Huang-lei, ZHANG Zhi-guo. Map-based Cloning of Light-responsive Gene ELM1 in Rice [J]. Biotechnology Bulletin, 2025, 41(5): 82-89. |
| [11] | LIU Yuan, ZHAO Ran, LU Zhen-fang, LI Rui-li. Research Progress in the Biological Metabolic Pathway and Functions of Plant Carotenoids [J]. Biotechnology Bulletin, 2025, 41(5): 23-31. |
| [12] | CHEN Xiao-jun, HUI Jian, MA Hong-wen, BAI Hai-Bo, ZHONG Nan, LI Jia-run, FAN Yun-fang. Creating Rice Gerplasm Resources OsALS Rsistant to Herbicide through Single Base Gene Editing Technology [J]. Biotechnology Bulletin, 2025, 41(4): 106-114. |
| [13] | ZHANG Yi-xuan, MA Yu, WANG Tong-tong, SHENG Su-ao, SONG Jia-feng, LYU Zhao-yan, ZHU Xiao-biao, HOU Hua-lan. Genome-wide Identification and Expression Profiles of DIR Gene Family in Potato [J]. Biotechnology Bulletin, 2025, 41(3): 123-136. |
| [14] | HAN Jiang-tao, ZHANG Shuai-bo, QIN Ya-rui, HAN Shuo-yang, ZHANG Ya-kang, WANG Ji-qing, DU Qing-jie, XIAO Huai-juan, LI Meng. Identification of β-amylase Gene Family in Melon and Their Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2025, 41(3): 171-180. |
| [15] | LI Xin-peng, ZHANG Wu-han, ZHANG Li, SHU Fu, HE Qiang, GUO Yang, DENG Hua-feng, WANG Yue, SUN Ping-yong. Creation of Rice Mutant by Gamma-ray and Its Molecular Identification [J]. Biotechnology Bulletin, 2025, 41(3): 35-43. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||