Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (9): 22-31.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0276
LIU Yu-shi(
), LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin(
)
Received:2025-03-14
Online:2025-09-26
Published:2025-08-06
Contact:
LI Bin
E-mail:liuyushikassy@163.com;binli@cpu.edu.cn
LIU Yu-shi, LI Zhen, ZOU Yu-chen, TANG Wei-wei, LI Bin. Advances in Spatial Metabolomics in Medicinal Plants[J]. Biotechnology Bulletin, 2025, 41(9): 22-31.
| Year | Species | Sample type | Image resolution (μm) | Imaging techniques | Analytes | Reference |
|---|---|---|---|---|---|---|
| 2017 | Hypericum perforatum L. | Root | 5 | MALDI | Xanthone | [ |
| 2017 | Tripterygium wilfordii Hook. f. | Root | 50 | MALDI | Triterpenoids, alkaloids | [ |
| 2018 | Ginkgo biloba L. | Leaf | 50 | MALDI | Flavonoids, organic acids, ginkgolides | [ |
| 2019 | Curcuma longa L. | Root | 5-25 | MALDI | Curcumin | [ |
| 2021 | Paeonia suffruticosa Andrews. Paeonia lactiflora Pall. | Root | 35 | MALDI | Paeonol glycosides, tannins, flavonoids | [ |
| 2021 | Panax. notoginseng (Burkill) F. H. Chen ex C. H. | Root | 100 | MALDI | Notoginsenoside | [ |
| 2021 | Asclepias curassavica L. | Leaf | 20-45 | MALDI | Cardiac glycosides | [ |
| 2021 | Lycium chinense Mill. | Fruit | 25 | MALDI | Flavonoids, organic acids, alkaloids | [ |
| 2021 | Catharanthus roseus (L.) G. Don | Petal | 250-500 | SALDI | Monoterpenoid indole alkaloids | [ |
| 2022 | Coptis chinensis Franch. | Rhizome | 1 | SIMS | Alkaloids | [ |
| 2022 | Salvia miltiorrhiza Bunge. | Root, stem, leaf, petal | 100 | DESI | Flavonoids, phenolic acids, tanshinones | [ |
| 2022 | Isatis tinctoria L. | Root | 80 | DESI | Sulfur-containing compounds, alkaloids | [ |
| 2023 | Salvia miltiorrhiza Bunge Salvia grandifolia W. W. Sm. | Root, leaf | 100-200 | DESI | Terpenes, phenolic acids, tanshinones | [ |
| 2023 | Nelumbo nucifera Gaertn. | Leaf, seed plumule, milky sap | 30 | MALDI | Benzylisoquinoline alkaloids | [ |
| 2023 | Pueraria lobata (Willd.) Ohwi Pueraria thomsonii Benth. | Root | 50 | AFADESI | Phenolic acids, flavonoids | [ |
| 2023 | Angelica sinensis (Oliv.) Diels | Root | 35 | MALDI | Volatile oil | [ |
| 2023 | Taxus wallichiana var.chinensis (Pilg.) Florin | Leaf | 20 | MALDI | Taxanes, flavonoids, coumarins | [ |
| 2023 | Rauvolfia tetraphylla L. | Root, stem, leaf, fruit | 15-20 300 | MALDI DESI | Monoterpenoid indole alkaloids | [ |
| 2024 | Scutellaria baicalensis Georgi | Root, stem | 10 | MALDI | Flavonoids, organic acids | [ |
| 2024 | Panax quinquefolius L. | Root | 120 | DESI | Saponins | [ |
| 2024 | Cyclocarya paliurus (Batalin) Iljinsk. | Leaf | 200 | DESI | Phenylpropanoids, flavonoids, triterpenes | [ |
| 2024 | Fagopyrum tataricum (L.) Gaertn. | Achene | 20 | MALDI | Flavonoids, phenolic acids | [ |
| 2024 | Angelicae Dahuricae Radix | Root | 40 | MALDI | Coumarins | [ |
| 2025 | Atractylodes lancea rhizome | Root, stems | 200 | DESI | Volatile oil | [ |
| 2025 | Fritillaria cirrhosa D. Don Fritillaria thunbergii Miq. Fritillaria usuriensis Maxim. | Bulb | 75 | DESI | Alkaloid | [ |
| 2025 | Camellia sinensis (L.) Kuntze | Root, leaf, bud | 100 | DESI | Triterpenoid saponins | [ |
Table 1 Applications of spatial metabolomics technology in medicinal plants
| Year | Species | Sample type | Image resolution (μm) | Imaging techniques | Analytes | Reference |
|---|---|---|---|---|---|---|
| 2017 | Hypericum perforatum L. | Root | 5 | MALDI | Xanthone | [ |
| 2017 | Tripterygium wilfordii Hook. f. | Root | 50 | MALDI | Triterpenoids, alkaloids | [ |
| 2018 | Ginkgo biloba L. | Leaf | 50 | MALDI | Flavonoids, organic acids, ginkgolides | [ |
| 2019 | Curcuma longa L. | Root | 5-25 | MALDI | Curcumin | [ |
| 2021 | Paeonia suffruticosa Andrews. Paeonia lactiflora Pall. | Root | 35 | MALDI | Paeonol glycosides, tannins, flavonoids | [ |
| 2021 | Panax. notoginseng (Burkill) F. H. Chen ex C. H. | Root | 100 | MALDI | Notoginsenoside | [ |
| 2021 | Asclepias curassavica L. | Leaf | 20-45 | MALDI | Cardiac glycosides | [ |
| 2021 | Lycium chinense Mill. | Fruit | 25 | MALDI | Flavonoids, organic acids, alkaloids | [ |
| 2021 | Catharanthus roseus (L.) G. Don | Petal | 250-500 | SALDI | Monoterpenoid indole alkaloids | [ |
| 2022 | Coptis chinensis Franch. | Rhizome | 1 | SIMS | Alkaloids | [ |
| 2022 | Salvia miltiorrhiza Bunge. | Root, stem, leaf, petal | 100 | DESI | Flavonoids, phenolic acids, tanshinones | [ |
| 2022 | Isatis tinctoria L. | Root | 80 | DESI | Sulfur-containing compounds, alkaloids | [ |
| 2023 | Salvia miltiorrhiza Bunge Salvia grandifolia W. W. Sm. | Root, leaf | 100-200 | DESI | Terpenes, phenolic acids, tanshinones | [ |
| 2023 | Nelumbo nucifera Gaertn. | Leaf, seed plumule, milky sap | 30 | MALDI | Benzylisoquinoline alkaloids | [ |
| 2023 | Pueraria lobata (Willd.) Ohwi Pueraria thomsonii Benth. | Root | 50 | AFADESI | Phenolic acids, flavonoids | [ |
| 2023 | Angelica sinensis (Oliv.) Diels | Root | 35 | MALDI | Volatile oil | [ |
| 2023 | Taxus wallichiana var.chinensis (Pilg.) Florin | Leaf | 20 | MALDI | Taxanes, flavonoids, coumarins | [ |
| 2023 | Rauvolfia tetraphylla L. | Root, stem, leaf, fruit | 15-20 300 | MALDI DESI | Monoterpenoid indole alkaloids | [ |
| 2024 | Scutellaria baicalensis Georgi | Root, stem | 10 | MALDI | Flavonoids, organic acids | [ |
| 2024 | Panax quinquefolius L. | Root | 120 | DESI | Saponins | [ |
| 2024 | Cyclocarya paliurus (Batalin) Iljinsk. | Leaf | 200 | DESI | Phenylpropanoids, flavonoids, triterpenes | [ |
| 2024 | Fagopyrum tataricum (L.) Gaertn. | Achene | 20 | MALDI | Flavonoids, phenolic acids | [ |
| 2024 | Angelicae Dahuricae Radix | Root | 40 | MALDI | Coumarins | [ |
| 2025 | Atractylodes lancea rhizome | Root, stems | 200 | DESI | Volatile oil | [ |
| 2025 | Fritillaria cirrhosa D. Don Fritillaria thunbergii Miq. Fritillaria usuriensis Maxim. | Bulb | 75 | DESI | Alkaloid | [ |
| 2025 | Camellia sinensis (L.) Kuntze | Root, leaf, bud | 100 | DESI | Triterpenoid saponins | [ |
| [1] | Luo ZW, Yin FC, Wang XB, et al. Progress in approved drugs from natural product resources [J]. Chin J Nat Med, 2024, 22(3): 195-211. |
| [2] | Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future [J]. Science, 2016, 353(6305): 1232-1236. |
| [3] | Watson BS, Urbanczyk-Wochniak E, Lei ZT. Proceedings of the Plant Biology & Botany 2007 [C]. Chicago: American Society of Plant Biologists & Botanical Society of America, 2007. |
| [4] | Sun CL, Li TG, Song XW, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations [J]. Proc Natl Acad Sci USA, 2019, 116(1): 52-57. |
| [5] | Li B, Bhandari DR, Janfelt C, et al. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging [J]. Plant J, 2014, 80(1): 161-171. |
| [6] | Yamamoto K, Takahashi K, Mizuno H, et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS [J]. Proc Natl Acad Sci USA, 2016, 113(14): 3891-3896. |
| [7] | Yan X, Zhao XA, Zhou ZP, et al. Cell-type-specific metabolic profiling achieved by combining desorption electrospray ionization mass spectrometry imaging and immunofluorescence staining [J]. Anal Chem, 2020, 92(19): 13281-13289. |
| [8] | Wang MQ, Cai KD, Li ZP, et al. Quantitative accuracy assessment of trace elements and halogens in apatite by time-of-flight secondary ion mass spectrometry (TOF-SIMS) [J]. J Anal At Spectrom, 2024, 39(6): 1609-1615. |
| [9] | Chingin K, Gamez G, Chen HW, et al. Rapid classification of perfumes by extractive electrospray ionization mass spectrometry (EESI-MS) [J]. Rapid Commun Mass Spectrom, 2008, 22(13): 2009-2014. |
| [10] | Rabbani S, Barber AM, Fletcher JS, et al. TOF-SIMS with Argon gas cluster ion beams: a comparison with C60+ [J]. Anal Chem, 2011, 83(10): 3793-3800. |
| [11] | Jung S, Foston M, Kalluri UC, et al. 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass [J]. Angew Chem Int Ed, 2012, 51(48): 12005-12008. |
| [12] | Kakouridis A, Yuan MT, Nuccio EE, et al. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter [J]. New Phytol, 2024, 242(4): 1661-1675. |
| [13] | Honeker LK, Hildebrand GA, Fudyma JD, et al. Elucidating drought-tolerance mechanisms in plant roots through 1H NMR metabolomics in parallel with MALDI-MS, and NanoSIMS imaging techniques [J]. Environ Sci Technol, 2022, 56(3): 2021-2032. |
| [14] | Bredehöft J, Bhandari DR, Pflieger FJ, et al. Visualizing and profiling lipids in the OVLT of fat-1 and wild type mouse brains during LPS-induced systemic inflammation using AP-SMALDI MSI [J]. ACS Chem Neurosci, 2019, 10(10): 4394-4406. |
| [15] | Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques [J]. Mass Spectrom Rev, 2016, 35(1): 147-169. |
| [16] | Heijs B, Potthoff A, Soltwisch J, et al. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging [J]. Anal Chem, 2020, 92(20): 13904-13911. |
| [17] | Li XP, Hang L, Wang TT, et al. Nanoscale three-dimensional imaging of drug distributions in single cells via laser desorption post-ionization mass spectrometry [J]. J Am Chem Soc, 2021, 143(51): 21648-21656. |
| [18] | Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces [J]. Nat Methods, 2017, 14(12): 1156-1158. |
| [19] | He JM, Tang F, Luo ZG, et al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application [J]. Rapid Commun Mass Spectrom, 2011, 25(7): 843-850. |
| [20] | Liu CY, Qi KK, Yao L, et al. Imaging of polar and nonpolar species using compact desorption electrospray ionization/postphotoionization mass spectrometry [J]. Anal Chem, 2019, 91(10): 6616-6623. |
| [21] | Buchberger AR, DeLaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights [J]. Anal Chem, 2018, 90(1): 240-265. |
| [22] | Hansen RL, Lee YJ. High-spatial resolution mass spectrometry imaging: toward single cell metabolomics in plant tissues [J]. Chem Rec, 2018, 18(1): 65-77. |
| [23] | Goto-Inoue N, Hayasaka T, Zaima N, et al. Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin [J]. PLoS One, 2012, 7(11): e49519. |
| [24] | Gemperline E, Jayaraman D, Maeda J, et al. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS [J]. J Am Soc Mass Spectrom, 2015, 26(1): 149-158. |
| [25] | Cha S, Zhang H, Ilarslan HI, et al. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry [J]. Plant J, 2008, 55(2): 348-360. |
| [26] | Wu LT, Qi KK, Liu CY, et al. Enhanced coverage and sensitivity of imprint DESI mass spectrometry imaging for plant leaf metabolites by post-photoionization [J]. Anal Chem, 2022, 94(43): 15108-15116. |
| [27] | Hu H, Qiu KD, Hao QC, et al. Electromagnetic field-assisted frozen tissue planarization enhances MALDI-MSI in plant spatial omics [J]. Anal Chem, 2024, 96(29): 11809-11822. |
| [28] | Zhu XP, Xu TY, Peng C, et al. Advances in MALDI mass spectrometry imaging single cell and tissues [J]. Front Chem, 2022, 9: 782432. |
| [29] | Li B, Sun RY, Gordon A, et al. 3-aminophthalhydrazide (luminol) as a matrix for dual-polarity MALDI MS imaging [J]. Anal Chem, 2019, 91(13): 8221-8228. |
| [30] | Wu R, Jiang DX, Hu H, et al. 4-Aminoazobenzene: a novel negative ion matrix for enhanced MALDI tissue imaging of metabolites [J]. Chin Chem Lett, 2024, 35(11): 109624. |
| [31] | Tang WW, Gordon A, Wang F, et al. Hydralazine as a versatile and universal matrix for high-molecular coverage and dual-polarity matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Anal Chem, 2021, 93(26): 9083-9093. |
| [32] | Chen YW, Hu DJ, Zhao LS, et al. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix [J]. Anal Chim Acta, 2022, 1192: 339337. |
| [33] | Song XW, Li C, Meng YF. Mass spectrometry imaging advances and application in pharmaceutical research [J]. Acta Mater Med, 2022, 1(4): 507-533. |
| [34] | Ràfols P, Vilalta D, Brezmes J, et al. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications [J]. Mass Spectrom Rev, 2018, 37(3): 281-306. |
| [35] | Verbeeck N, Caprioli RM, Van de Plas R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry [J]. Mass Spectrom Rev, 2020, 39(3): 245-291. |
| [36] | Hu H, Laskin J. Emerging computational methods in mass spectrometry imaging [J]. Adv Sci, 2022, 9(34): e2203339. |
| [37] | Li D, Qian Y, Yao HM, et al. DeepS: accelerating 3D mass spectrometry imaging via a deep neural network [J]. Anal Chem, 2023, 95(29): 10879-10886. |
| [38] | Tang WW, Li Z, Zou YC, et al. A multimodal pipeline for image correction and registration of mass spectrometry imaging with microscopy [J]. Anal Chim Acta, 2023, 1283: 341969. |
| [39] | Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence [J]. Annu Rev Biomed Data Sci, 2020, 3: 61-87. |
| [40] | Schramm T, Hester Z, Klinkert I, et al. imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data [J]. J Proteom, 2012, 75(16): 5106-5110. |
| [41] | Alexandrov T, Ovchnnikova K, Palmer A, et al. METASPACE: A community-populated knowledge base of spatial metabolomes in health and disease [J]. 2019: 539478. |
| [42] | Li B, Neumann EK, Ge JY, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging [J]. Plant Cell Environ, 2018, 41(11): 2693-2703. |
| [43] | Xia J, Lou GG, Zhang L, et al. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI [J]. Hortic Res, 2023, 10(7): uhad109. |
| [44] | Tong Q, Zhang C, Tu Y, et al. Biosynthesis-based spatial metabolome of Salvia miltiorrhiza Bunge by combining metabolomics approaches with mass spectrometry-imaging [J]. Talanta, 2022, 238: 123045. |
| [45] | Zhan XR, Qiu T, Zhang HS, et al. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves [J]. Plant Commun, 2023, 4(5): 100630. |
| [46] | He F, Huang YF, Dai W, et al. The localization of the alkaloids in Coptis chinensis rhizome by time-of-flight secondary ion mass spectrometry [J]. Front Plant Sci, 2022, 13: 1092643. |
| [47] | Luo SY, Yang XX, Zhang Y, et al. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging [J]. Food Chem, 2024, 435: 137504. |
| [48] | Li Q, Chen YY, Gao H, et al. In situ analysis of volatile oil in Angelica sinensis roots by fluorescence imaging combined with mass spectrometry imaging [J]. Talanta, 2023, 255: 124253. |
| [49] | Jiang DQ, Lin HB, Liu ZH, et al. Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities [J]. Mol Hortic, 2025, 5(1): 11. |
| [50] | Yue XF, Feng L, Sun CL, et al. Visualizing the spatial distribution of metabolites in Angelica sinensis roots by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Phytochem Anal, 2025. |
| [51] | Han YH, Zhao YS, Chen PP, et al. On-tissue derivatization for isomer-specific mass spectrometry imaging and relative quantification of monosaccharides in biological tissues [J]. Anal Chim Acta, 2022, 1225: 340241. |
| [52] | Sun CL, Liu W, Ma SS, et al. Development of a high-coverage matrix-assisted laser desorption/ionization mass spectrometry imaging method for visualizing the spatial dynamics of functional metabolites in Salvia miltiorrhiza Bge [J]. J Chromatogr A, 2020, 1614: 460704. |
| [53] | Li B, Hansen SH, Janfelt C. Direct imaging of plant metabolites in leaves and petals by desorption electrospray ionization mass spectrometry [J]. Int J Mass Spectrom, 2013, 348: 15-22. |
| [54] | Tocci N, Gaid M, Kaftan F, et al. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots [J]. New Phytol, 2018, 217(3): 1099-1112. |
| [55] | Lange BM, Fischedick JT, Lange MF, et al. Integrative approaches for the identification and localization of specialized metabolites in Tripterygium roots [J]. Plant Physiol, 2017, 173(1): 456-469. |
| [56] | Shimma S, Sagawa T. Microscopy and mass spectrometry imaging reveals the distributions of curcumin species in dried turmeric root [J]. J Agric Food Chem, 2019, 67(34): 9652-9657. |
| [57] | Li B, Ge JY, Liu W, et al. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging [J]. New Phytol, 2021, 231(2): 892-902. |
| [58] | Sun CL, Ma SS, Li LL, et al. Visualizing the distributions and spatiotemporal changes of metabolites in Panax notoginseng by MALDI mass spectrometry imaging [J]. J Ginseng Res, 2021, 45(6): 726-733. |
| [59] | Dreisbach D, Petschenka G, Spengler B, et al. 3D-surface MALDI mass spectrometry imaging for visualising plant defensive cardiac glycosides in Asclepias curassavica [J]. Anal Bioanal Chem, 2021, 413(8): 2125-2134. |
| [60] | Zhao WH, Zhang YD, Shi YP. Visualizing the spatial distribution of endogenous molecules in wolfberry fruit at different development stages by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Talanta, 2021, 234: 122687. |
| [61] | Dutkiewicz EP, Su CH, Lee HJ, et al. Visualizing Vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry [J]. Plant J, 2021, 105(4): 1123-1133. |
| [62] | Nie LX, Huang LY, Wang XP, et al. Desorption electrospray ionization mass spectrometry imaging illustrates the quality characters of isatidis Radix [J]. Front Plant Sci, 2022, 13: 897528. |
| [63] | Hao CY, Yang W, Dong GQ, et al. Visualization and identification of benzylisoquinoline alkaloids in various Nelumbo nucifera tissues [J]. Heliyon, 2023, 9(6): e16138. |
| [64] | Guo N, Fang ZY, Zang QC, et al. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species [J]. J Ethnopharmacol, 2023, 313: 116546. |
| [65] | Lorensen MDBB, Bjarnholt N, St-Pierre B, et al. Spatial localization of monoterpenoid indole alkaloids in Rauvolfia tetraphylla by high resolution mass spectrometry imaging [J]. Phytochemistry, 2023, 209: 113620. |
| [66] | Zhou PP, Zuo LH, Liu C, et al. Unraveling spatial metabolome of the aerial and underground parts of Scutellaria baicalensis by matrix-assisted laser desorption/ionization mass spectrometry imaging [J]. Phytomedicine, 2024, 123: 155259. |
| [67] | Xi HT, Xu WX, He FX, et al. Spatial metabolome of biosynthesis and metabolism in Cyclocarya paliurus leaves [J]. Food Chem, 2024, 443: 138519. |
| [68] | Liu TX, Wang P, Chen YL, et al. LC-MS and MALDI-MSI-based metabolomic approaches provide insights into the spatial-temporal metabolite profiles of Tartary buckwheat achene development [J]. Food Chem, 2024, 449: 139183. |
| [69] | Wang CS, Liu YL, Wang XL, et al. Influence of sulfur fumigation on angelicae dahuricae Radix: insights from chemical profiles, MALDI-MSI and anti-inflammatory activities [J]. Molecules, 2024, 30(1): 22. |
| [70] | Guo XC, Cheng KY, Wang CX, et al. Spatial distribution of alkaloids in Fritillaria Bulbus using UPLC-Q-Exactive Orbitrap MS/MS and desorption electrospray MS imaging [J]. LWT, 2025, 218: 117544. |
| [71] | Du ZH, Zhou Y, Guo S, et al. Triterpenoid saponins in tea plants: a spatial and metabolic analysis using UPLC-QTOFMS, molecular networking, and DESI-MSI [J]. Food Chem, 2025, 475: 143323. |
| [72] | Lu X, Yang H, Liu XG, et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L [J]. Front Plant Sci, 2017, 8: 872. |
| [73] | Tang WW, Shi JJ, Liu W, et al. MALDI imaging assisted discovery of a di-O-glycosyltransferase from Platycodon grandiflorum root [J]. Angew Chem Int Ed, 2023, 62(19): e202301309. |
| [74] | Berman P, de Haro LA, Cavaco AR, et al. The biosynthetic pathway of the hallucinogen mescaline and its heterologous reconstruction [J]. Mol Plant, 2024, 17(7): 1129-1150. |
| [75] | Dong YH, Sonawane P, Cohen H, et al. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox [J]. New Phytol, 2020, 228(6): 1986-2002. |
| [76] | Alexander LE, Gilbertson JS, Xie B, et al. High spatial resolution imaging of the dynamics of cuticular lipid deposition during Arabidopsis flower development [J]. Plant Direct, 2021, 5(4): e00322. |
| [1] | WANG Bin, LIN Chong, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui. Cloning of bHLH Transcription Factor UNE10 and Its Regulatory Roles in the Biosynthesis of Volatile Compounds in Clove Basil [J]. Biotechnology Bulletin, 2025, 41(9): 207-218. |
| [2] | CAI Ru-feng, YANG Yu-xuan, YU Ji-zheng, LI Jia-nan. Artificial Intelligence Transforms Protein Engineering: From Structural Analysis to Synthetic Biology through Algorithmic Advancements [J]. Biotechnology Bulletin, 2025, 41(8): 1-10. |
| [3] | GAO Jing, CHENG Yi-cun, GAO Ming, ZHAO Yun-xiao, WANG Yang-dong. Regulation of Plant Tannin Synthesis and Mechanisms of Its Responses to Environment [J]. Biotechnology Bulletin, 2025, 41(7): 49-59. |
| [4] | HUANG Xu-sheng, ZHOU Ya-li, CHAI Xu-dong, WEN Jing, WANG Ji-ping, JIA Xiao-yun, LI Run-zhi. Cloning of Plastidial PfLPAT1B Gene from Perilla frutescens and Its Functional Analysis in Oil Biosynthesis [J]. Biotechnology Bulletin, 2025, 41(7): 226-236. |
| [5] | WU Ya, YAO Run, YANG Han-ting, LIU Wei, YANG Shuai, SONG Chi, CHEN Shi-lin. Genome-wide Identification and Expression Analysis of SDR Gene Family in Mentha suaveolens ‘Variegata’ [J]. Biotechnology Bulletin, 2025, 41(5): 175-185. |
| [6] | LU Tian-yi, LI Ai-peng, FEI Qiang. Research Progress in the Biosynthesis of Polylactic Acid [J]. Biotechnology Bulletin, 2025, 41(4): 47-60. |
| [7] | LI Xiao-ming, SHANG Xiu-hua, WANG You-shuang, WU Zhi-hua. Research Progress in Benzoxazinoids in Plants [J]. Biotechnology Bulletin, 2025, 41(4): 9-20. |
| [8] | LIU Lu, ZHU Zhe-yuan, LI Ying-xi, WANG Jie, PENG Di. Research Progress in Microbial Herbicides [J]. Biotechnology Bulletin, 2024, 40(9): 161-171. |
| [9] | MA Xiao-xiang, MA Ze-yuan, LIU Ya-yue, ZHOU Long-jian, HE Yi-fan, ZHANG Yi. Effects of Simulated Mutational Biosynthetic Regulation on the Secondary Metabolites of Aspergillus terreus C23-3 [J]. Biotechnology Bulletin, 2024, 40(8): 275-287. |
| [10] | NIE Zhu-xin, GUO Jin, QIAO Zi-yang, LI Wei-wei, ZHANG Xue-yan, LIU Chun-yang, WANG Jing. Transcriptome Analysis of the Anthocyanin Biosynthesis in the Fruit Development Processes of Lycium ruthenicum Murr. [J]. Biotechnology Bulletin, 2024, 40(8): 106-117. |
| [11] | LIU Chuan-he, HE Han, SHAO Xue-hua, HE Xiu-gu. Analysis of Differential Metabolites and Bacterial Community Structure in the Soils of a Pineapple Orchard under Different Mulching Treatments [J]. Biotechnology Bulletin, 2024, 40(7): 247-258. |
| [12] | SHEN Zhen-hui, CAO Yao, YANG Lin-lei, LUO Xiang-ying, ZI Ling-shan, LU Qing-qing, LI Rong-chun. Cloning and Bioinformatics Analysis of the Ergothioneine Biosynthesis Genes in Naematelia aurantialba and Stereum hirsutum [J]. Biotechnology Bulletin, 2024, 40(7): 259-272. |
| [13] | HE Yu-bing, FU Zhen-hao, LI Ren-han, LIU Xiu-xia, LIU Chun-li, YANG Yan-kun, LI Ye, BAI Zhong-hu. Efficient Biosynthesis of 2-Naphthaleneethanol in Metabolically Engineered Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2024, 40(7): 99-107. |
| [14] | HU Jin-jin, LI Su-zhen, MA Xu-hui, LIU Xiao-qing, XIE Shan-shan, JIANG Hai-yang, CHEN Ru-mei. Regulation of Maize Anthocyanin Biosynthesis Metabolism [J]. Biotechnology Bulletin, 2024, 40(6): 34-44. |
| [15] | PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet [J]. Biotechnology Bulletin, 2024, 40(4): 33-39. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||