Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 33-39.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1051
Previous Articles Next Articles
PENG Feng(), YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu()
Received:
2023-11-09
Online:
2024-04-26
Published:
2024-04-30
Contact:
TAN Gui-yu
E-mail:1272277231@qq.com;tanguiyu@126.com
PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet[J]. Biotechnology Bulletin, 2024, 40(4): 33-39.
[1] |
Ischebeck T, Krawczyk HE, Mullen RT, et al. Lipid droplets in plants and algae: distribution, formation, turnover and function[J]. Semin Cell Dev Biol, 2020, 108: 82-93.
doi: 10.1016/j.semcdb.2020.02.014 pmid: 32147380 |
[2] |
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree[J]. Prog Lipid Res, 2020, 78: 101029.
doi: 10.1016/j.plipres.2020.101029 URL |
[3] |
Zhao M, Wu SP. Seed development and oil body dynamics of tree peony[J]. Trees, 2020, 34(3): 721-729.
doi: 10.1007/s00468-020-01952-5 |
[4] |
Chen YM, Li HN, Zhang CM, et al. Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases[J]. J Americ Oil Chem Soc, 2021, 98(11): 1057-1068.
doi: 10.1002/aocs.v98.11 URL |
[5] |
Krawczyk HE, Rotsch AH, Herrfurth C, et al. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes[J]. Plant Physiol, 2022, 189(2): 490-515.
doi: 10.1093/plphys/kiac127 pmid: 35302599 |
[6] | Zhao YW, Dong QD, Geng YH, et al. Dynamic regulation of lipid droplet biogenesis in plant cells and proteins involved in the process[J]. Int J Mol Sci, 2023, 24(8): 7476. |
[7] |
Bouchnak I, Coulon D, Salis V, et al. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes[J]. Front Plant Sci, 2023, 14: 1193905.
doi: 10.3389/fpls.2023.1193905 URL |
[8] |
Mamode Cassim A, Gouguet P, Gronnier J, et al. Plant lipids: key players of plasma membrane organization and function[J]. Prog Lipid Res, 2019, 73: 1-27.
doi: S0163-7827(17)30071-1 pmid: 30465788 |
[9] |
Nikiforidis CV. Structure and functions of oleosomes(oil bodies)[J]. Adv Colloid Interface Sci, 2019, 274: 102039.
doi: 10.1016/j.cis.2019.102039 URL |
[10] | Zienkiewicz A, Saldat M, Zienkiewicz K. Here, there and everywhere - the importance of neutral lipids in plant growth and development[J]. Postepy Biochem, 2021, 68(1): 46-56. |
[11] |
Scholz P, Chapman KD, Mullen RT, et al. Finding new friends and revisiting old ones - how plant lipid droplets connect with other subcellular structures[J]. New Phytol, 2022, 236(3): 833-838.
doi: 10.1111/nph.v236.3 URL |
[12] |
Shao Q, Liu XF, Su T, et al. New insights into the role of seed oil body proteins in metabolism and plant development[J]. Front Plant Sci, 2019, 10: 1568.
doi: 10.3389/fpls.2019.01568 pmid: 31921234 |
[13] |
Jiang PL, Tzen JTC. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies[J]. Plant Signal Behav, 2010, 5(4): 447-449.
doi: 10.4161/psb.5.4.10874 URL |
[14] |
Charuchinda P, Waditee-Sirisattha R, Kageyama H, et al. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein[J]. Biosci Biotechnol Biochem, 2015, 79(7): 1119-1124.
doi: 10.1080/09168451.2015.1010480 URL |
[15] | Fang Y, Zhu RL, Mishler BD. Evolution of oleosin in land plants[J]. PLoS One, 2014, 9(8): e103806. |
[16] |
Huang CY, Huang AHC. Unique motifs and length of hairpin in oleosin target the cytosolic side of endoplasmic reticulum and budding lipid droplet[J]. Plant Physiol, 2017, 174(4): 2248-2260.
doi: 10.1104/pp.17.00366 URL |
[17] |
Purkrtová Z, Chardot T, Froissard M. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation[J]. Arch Biochem Biophys, 2015, 579: 47-54.
doi: 10.1016/j.abb.2015.05.008 pmid: 26032334 |
[18] |
Laibach N, Post J, Twyman RM, et al. The characteristics and potential applications of structural lipid droplet proteins in plants[J]. J Biotechnol, 2015, 201: 15-27.
doi: 10.1016/j.jbiotec.2014.08.020 pmid: 25160916 |
[19] |
Hanano A, Burcklen M, Flenet M, et al. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif[J]. J Biol Chem, 2006, 281(44): 33140-33151.
doi: 10.1074/jbc.M605395200 pmid: 16956885 |
[20] |
Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man[J]. J Lipid Res, 2012, 53(2): 215-226.
doi: 10.1194/jlr.R021436 pmid: 22045929 |
[21] |
Pasaribu B, Chung TY, Chen CS, et al. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes[J]. Plant Physiol Biochem, 2014, 82: 142-150.
doi: 10.1016/j.plaphy.2014.05.015 URL |
[22] |
Song WL, Qin YJ, Zhu Y, et al. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution[J]. BMC Evol Biol, 2014, 14: 124.
doi: 10.1186/1471-2148-14-124 pmid: 24913827 |
[23] |
Shen Y, Xie J, Liu RD, et al. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis[J]. Biochem Biophys Res Commun, 2014, 448(4): 365-371.
doi: 10.1016/j.bbrc.2014.04.115 URL |
[24] | 赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展[J]. 遗传, 2022, 44(12): 1128-1140. |
Zhao HQ, Wang XF, Gao SP. Progress on the functional role of oleosin gene family in plants[J]. Hered Beijing, 2022, 44(12): 1128-1140. | |
[25] | Rahman F, Hassan M, Rosli R, et al. Evolutionary and genomic analysis of the caleosin/peroxygenase(CLO/PXG)gene/protein families in the Viridiplantae[J]. PLoS One, 2018, 13(5): e0196669. |
[26] | Khalil HB, Brunetti SC, Pham UM, et al. Characterization of the caleosin gene family in the Triticeae[J]. BMC Genomics, 2014, 15(1): 239. |
[27] |
Fu XK, Yang YL, Kang M, et al. Evolution and stress responses of CLO genes and potential function of the GhCLO06 gene in salt resistance of cotton[J]. Front Plant Sci, 2022, 12: 801239.
doi: 10.3389/fpls.2021.801239 URL |
[28] |
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves[J]. Plant Physiol, 2018, 176(1): 199-207.
doi: 10.1104/pp.17.01522 pmid: 29203559 |
[29] |
Brocard L, Immel F, Coulon D, et al. Proteomic analysis of lipid droplets from Arabidopsis aging leaves brings new insight into their biogenesis and functions[J]. Front Plant Sci, 2017, 8: 894.
doi: 10.3389/fpls.2017.00894 URL |
[30] |
Huang AHC. Plant lipid droplets and their associated proteins: potential for rapid advances[J]. Plant Physiol, 2018, 176(3): 1894-1918.
doi: 10.1104/pp.17.01677 pmid: 29269574 |
[31] |
Shimada TL, Hara-Nishimura I. Leaf oil bodies are subcellular factories producing antifungal oxylipins[J]. Curr Opin Plant Biol, 2015, 25: 145-150.
doi: 10.1016/j.pbi.2015.05.019 pmid: 26051035 |
[32] |
Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
doi: 10.1038/s41580-018-0085-z |
[33] | 陈镇, 李秀丽, 陈法志. 植物油体合成及功能研究进展[J]. 世界科技研究与发展, 2021, 43(2): 182-191. |
Chen Z, Li XL, Chen FZ. Research progress on biological synthesis and biological function in plant oil body[J]. World Sci Tech R D, 2021, 43(2): 182-191. | |
[34] | Choi YJ, Zaikova K, Yeom SJ, et al. Biogenesis and lipase-mediated mobilization of lipid droplets in plants[J]. Plants, 2022, 11(9): 1243. |
[35] |
Guzha A, Whitehead P, Ischebeck T, et al. Lipid droplets: packing hydrophobic molecules within the aqueous cytoplasm[J]. Annu Rev Plant Biol, 2023, 74: 195-223.
doi: 10.1146/arplant.2023.74.issue-1 URL |
[36] | 李世升, 何宇清. 油菜种子发育早期的油体发生与调控[J]. 植物科学学报, 2019, 37(3): 389-395. |
Li SS, He YQ. Biogenesis and regulation of oil bodies during early stage seed formation in Brassica napus[J]. Plant Sci J, 2019, 37(3): 389-395. | |
[37] |
Chorlay A, Thiam AR. An asymmetry in monolayer tension regulates lipid droplet budding direction[J]. Biophys J, 2018, 114(3): 631-640.
doi: S0006-3495(17)35094-4 pmid: 29414709 |
[38] |
Chapman KD, Aziz M, Dyer JM, et al. Mechanisms of lipid droplet biogenesis[J]. Biochem J, 2019, 476(13): 1929-1942.
doi: 10.1042/BCJ20180021 pmid: 31289128 |
[39] |
Liu H, Hedley P, Cardle L, et al. Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development[J]. Planta, 2005, 221(4): 513-522.
pmid: 15702354 |
[40] |
Liu XL, Yang Z, Wang Y, et al. Multiple caleosins have overlapping functions in oil accumulation and embryo development[J]. J Exp Bot, 2022, 73(12): 3946-3962.
doi: 10.1093/jxb/erac153 pmid: 35419601 |
[41] |
Veerabagu M, Rinne PLH, Skaugen M, et al. Lipid body dynamics in shoot meristems: production, enlargement, and putative organellar interactions and plasmodesmal targeting[J]. Front Plant Sci, 2021, 12: 674031.
doi: 10.3389/fpls.2021.674031 URL |
[42] |
Mishra SK, Khan MH, Misra S, et al. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress[J]. Plant Physiol Biochem, 2020, 150: 1-14.
doi: 10.1016/j.plaphy.2020.02.025 URL |
[43] |
Jing P, Kong DY, Ji LX, et al. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings[J]. Plant J, 2021, 105(3): 800-815.
doi: 10.1111/tpj.v105.3 URL |
[44] | Sham A, Moustafa K, Al-Ameri S, et al. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays[J]. PLoS One, 2015, 10(5): e0125666. |
[45] | 向兰舟, 胡娅晴, 谢涵, 等. 拟南芥油体钙蛋白基因CALEOSIN3对胁迫环境及ABA诱导的响应[J]. 分子植物育种, 2022, 20(14): 4685-4690. |
Xiang LZ, Hu YQ, Xie H, et al. Response of Arabidopsis oil body protein gene CALEOSIN3 to stress environment and ABA induction[J]. Mol Plant Breed, 2022, 20(14): 4685-4690. | |
[46] |
Aubert Y, Leba LJ, Cheval C, et al. Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana[J]. Plant Signal Behav, 2011, 6(4): 538-540.
doi: 10.4161/psb.6.4.14836 pmid: 21673513 |
[47] | Jamme F, Vindigni JD, Méchin V, et al. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae[J]. PLoS One, 2013, 8(9): e74421. |
[48] |
Poxleitner M, Rogers SW, Lacey Samuels A, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. Plant J, 2006, 47(6): 917-933.
pmid: 16961733 |
[49] |
Miklaszewska M, Zienkiewicz K, Klugier-Borowska E, et al. CALEOSIN 1 interaction with AUTOPHAGY-RELATED PROTEIN 8 facilitates lipid droplet microautophagy in seedlings[J]. Plant Physiol, 2023, 193(4): 2361-2380.
doi: 10.1093/plphys/kiad471 pmid: 37619984 |
[50] |
Schmidt MA, Herman EM. Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes[J]. Mol Plant, 2008, 1(6): 910-924.
doi: 10.1093/mp/ssn049 pmid: 19825592 |
[51] | Pasaribu B, Fu JH, Jiang PL. Identification and characterization of caleosin in Cycas revoluta pollen[J]. Plant Signal Behav, 2020, 15(8): 1779486. |
[52] | Chang MT, Tsai TR, Lee CY, et al. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies[J]. J Agric Food Chem, 2013, 61(40): 9666-9671. |
[53] |
Shih YE, Lin YC, Chung TY, et al. In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3[J]. J Food Drug Anal, 2017, 25(4): 828-836.
doi: 10.1016/j.jfda.2016.08.008 URL |
[54] |
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants[J]. Ann Bot, 2023, 131(3): 387-409.
doi: 10.1093/aob/mcad001 URL |
[55] |
Hudak KA, Thompson JE. Flotation of lipid-protein particles containing triacylglycerol and phospholipid from the cytosol of carnation petals[J]. Physiol Plant, 1996, 98(4): 810-818.
doi: 10.1111/ppl.1996.98.issue-4 URL |
[56] |
Hudak KA, Thompson JE. Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals[J]. Plant Physiol, 1997, 114(2): 705-713.
pmid: 12223738 |
[57] |
Romani F, Banić E, Florent SN, et al. Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores[J]. Curr Biol, 2020, 30(14): 2815-2828.e8.
doi: 10.1016/j.cub.2020.05.081 URL |
[58] |
Hanano A, Alkara M, Almousally I, et al. The peroxygenase activity of the Aspergillus flavus caleosin, AfPXG, modulates the biosynthesis of aflatoxins and their trafficking and extracellular secretion via lipid droplets[J]. Front Microbiol, 2018, 9: 158.
doi: 10.3389/fmicb.2018.00158 URL |
[59] |
Hanano A, Perez-Matas E, Shaban M, et al. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel[J]. Plant Cell Rep, 2022, 41(4): 853-871.
doi: 10.1007/s00299-021-02823-0 pmid: 34984531 |
[60] | Liu CT, Tzen JTC. Exploring the relative astringency of tea catechins and distinct astringent sensation of catechins and flavonol glycosides via an in vitro assay composed of artificial oil bodies[J]. Molecules, 2022, 27(17): 5679. |
[1] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
[2] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[3] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[4] | HE Meng-ying, LIU Wen-bin, LIN Zhen-ming, LI Er-tong, WANG Jie, JIN Xiao-bao. Whole Genome Sequencing and Analysis of an Anti Gram-positive Bacterium Gordonia WA4-43 [J]. Biotechnology Bulletin, 2023, 39(2): 232-242. |
[5] | ZHANG Guo-ning, FENG Jing-xian, YANG Ying-bo, CHEN Wan-sheng, XIAO Ying. Application of Cyclodextrin Glucosyltransferase in the Glycosylation Modification of Natural Products [J]. Biotechnology Bulletin, 2022, 38(3): 246-255. |
[6] | WANG Nan, SU Yu, LIU Wen-jie, FENG Ming, MAO Yu, ZHANG Xin-guo. Research Progress on Active Compounds Against Drug-resistant Microorganism from Plant Endophytes [J]. Biotechnology Bulletin, 2021, 37(8): 263-274. |
[7] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
[8] | HU Bin-yue, HU Yang, CHENG Wen-min, ZHAO Su-mei, ZHAO Hong-Ye, WEI Hong-Jiang. Lipid Droplet Formation in the Pre-adipocytes of Leptin-overexpressed Pig [J]. Biotechnology Bulletin, 2020, 36(8): 111-119. |
[9] | ZHAO Jiang-hua, FANG Huan, ZHANG Da-wei. Research Progress in Biosynthesis of Secondary Metabolites of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(11): 141-147. |
[10] | GAO Yun-shan, LIU Dan-dan, XU Jun-lin, SANG Yu-nong, LIANG Xia-xia, LIU Jian-xin, WANG Wen-bin. Recombinant Expression and Immunogenicity Analysis of the Porin Protein OmpF of Aeromonas hydrophila [J]. Biotechnology Bulletin, 2019, 35(9): 234-243. |
[11] | MAO Ran-ran, LI Xiao-yan, WU Yao, ZHANG Li-shan, LIN Zhen-ping, LIN Xiang-min. Cloning and Expression of Outer Membrane Protein OprM from Aeromonas hydrophila and the Evaluation of Its Immunoprotective Effect [J]. Biotechnology Bulletin, 2019, 35(9): 244-248. |
[12] | XU Jie ,HUANG Jian-zhong, LI Li. Summary of Genomics Mining Technology and Its Research Progress in Fungi [J]. Biotechnology Bulletin, 2019, 35(11): 201-207. |
[13] | LIN Hai-zhou, CHEN Zhou-qin WANG Yan GUO Jun ZHU Hong-hui DENG Ming-rong. Mining the Cryptic Bioactive Secondary Metabolites from Streptomyces vietnamensis Using a‘Tree-Removal’Strategy [J]. Biotechnology Bulletin, 2017, 33(9): 145-152. |
[14] | AN Zhi-yuan ,SU Jian-rong. Expression and Purification of Outer Membrane Protein 34 of Acinetobacter baumannii and Analysis of Its Bioactivity [J]. Biotechnology Bulletin, 2017, 33(7): 185-194. |
[15] | FENG Xiao-yan ZHANG Shu-zhen. Research Advances on RNAi Mechanism and Its Application [J]. Biotechnology Bulletin, 2017, 33(5): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||