Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (11): 67-75.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0469
Previous Articles Next Articles
LI Shi-yu, FU Qiang, YAN Ya-xian
Received:
2017-06-05
Online:
2017-11-26
Published:
2017-11-22
LI Shi-yu, FU Qiang, YAN Ya-xian. Improvement and Optimization of Aptamer Selection[J]. Biotechnology Bulletin, 2017, 33(11): 67-75.
[1] Radom F, Jurek PM, Mazurek MP, et al. Aptamers:molecules of great potential[J]. Biotechnology Advances, 2013, 31(8):1260-1274. [2] Luo X, Mckeague M, Pitre S, et al. Computational approaches toward the design of pools for the in vitro selection of complex aptamers[J]. RNA, 2010, 16(11):2252-2262. [3] Blind M, Blank M. Aptamer Selection Technology and Recent Advances[J]. Molecular Therapy-Nucleic Acids, 2015, 4(1):e223. [4] Choi EW, Nayak LV, Bates PJ. Cancer-selective antiproliferative activity is a general property of some G-rich oligodeoxynucleotides [J]. Nucleic Acids Research, 2010, 38(5):1623-1635. [5] Santosh B, Yadava PK. Nucleic acid aptamers:research tools in disease diagnostics and therapeutics[J]. Biomed Research International, 2014, 2014(4):540451-540463. [6] Ahmad KM, Xiao Y, Soh HT. Selection is more intelligent than design:improving the affinity of a bivalent ligand through directed evolution[J]. Nucleic Acids Research, 2012, 40(22):11777-11783. [7] Hao Q, Csordas AT, Wang J, et al. Rapid and label-free strategy to isolate aptamers for metal ions[J]. Acs Nano, 2016, 10(8):7558-7565. [8] Yu H, Zhang S, Chaput JC. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor[J]. Nature Chemistry, 2012, 4(3):183-187. [9] Kimoto M, Yamashige R, Matsunaga K, et al. Generation of high-affinity DNA aptamers using an expanded genetic alphabet[J]. Nature Biotechnology, 2013, 31(5):453-457. [10] Sefah K, Yang Z, Bradley KM, et al. In vitro selection with artificial expanded genetic information systems[J]. Proc Natl Acad Sci U S A, 2013, 111(4):1449-54. [11] 杨歌, 魏强, 赵新颖, 等. 蛋白质的核酸适配体筛选的研究进展[J]. 色谱, 2016, 34(4):370-381. [12] Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis[J]. Journal of the American Chemical Society, 2004, 126(1):20-21. [13] Yang J, Bowser MT. CE-SELEX selection of catalytic DNA aptamers for a small molecule porphyrin target[J]. Analytical Chemistry, 2013, 85(3):1525-1530. [14] Chen M, Yu Y, Jiang F, et al. Development of Cell-SELEX technology and its application in cancer diagnosis and therapy[J]. International Journal of Molecular Sciences, 2016, 17(12):2079. [15] Zhao L, Tan W, Fang X. Introduction to aptamer and cell-SELEX[M]// Tan W, Fang X. Aptamers Selected by Cell-SELEX for Theranostics. Springer-Verlag Benlon Heidelberg, 2015:1-11. [16] Jing M, Ray P, Liu J, et al. In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase Protein DHX9[J]. Molecular Therapy-Nucleic Acids, 2016, 5(4):e315. [17] Ozer A, Pagano JM, Lis JT. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization[J]. Molecular Therapy Nucleic Acids, 2014, 3(2):e183. [18] Ye D, Gao Z, Wang L, et al. Selection and identification of chloramphenicol- specific DNA aptamers by Mag-SELEX[J]. applied Biochemistry & Biotechnology, 2016, 180(8):1-13. [19] Xu S, Yuan H, Chen S, et al. Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis[J]. Analytical Biochemistry, 2012, 423(423):195-201. [20] Paniel N, Istamboulié G, Triki A, et al. Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor[J]. Talanta, 2017, 162:232-240. [21] Wang J, Gong Q, Maheshwari N, et al. Particle display:a quantitative screening method for generating high-affinity aptamers[J]. Angewandte Chemie, 2014, 53(19):4796-4801. [22] Vater A, Jarosch F, Buchner K, et al. Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach:tailored-SELEX[J]. Nucleic Acids Research, 2003, 31(31):e130. [23] 邵宁生, 李少华, 黄燕苹. SELEX技术及Aptamer研究的新进展[J]. 生物化学与生物物理进展, 2006, 33(4):329-335. [24] Bae H, Ren S, Kang J, et al. Sol-gel SELEX circumventing chemical conjugation of low molecular weight metabolites discovers aptamers selective to xanthine[J]. Nucleic Acid Therapeutics, 2013, 23(6):443-449. [25] Wang Q, Liu W, Xing Y, et al. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application[J]. Analytical Chemistry, 2014, 86(13):6572-6579. [26] Huang CJ, Lin HI, Shiesh SC, et al. An integrated microfluidic system for rapid screening of alpha-fetoprotein-specific aptamers[J]. Biosensors & Bioelectronics, 2012, 35(1):50-55. [27] Huang CJ, Lin HI, Shiesh SC, et al. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment(SELEX)[J]. Biosensors & Bioelectronics, 2010, 25(7):1761-1766. [28] Liu X, Li H, Jia W, et al. Selection of aptamers based on a protein microarray integrated with a microfluidic chip[J]. Lab on A Chip, 2016, 17(1):178-185. [29] Cho M, Soo OS, Nie J, et al. Quantitative selection and parallel characterization of aptamers[J]. Proceedings of the National Academy of Sciences of the United states of America, 2013, 110(46):18460-18465. [30] Cho M, Xiao Y, Nie J, et al. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35):15373-15378. [31] Dausse E, Barré A, Aimé A, et al. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation[J]. Biosensors & Bioelectronics, 2016, 80(8):418-425. [32] Citartan M, Tang TH, Tan SC, et al. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production[J]. Songklanakarin Journal of Science & Technology, 2012, 34(2):125-131. [33] Tolle F, Wilke J, Wengel J, et al. By-product formation in repetitive PCR amplification of DNA libraries during SELEX[J]. PLoS One, 1932, 9(12):e114693. [34] Citartan M, Tang TH, Tan SC, et al. Conditions optimized for the preparation of single-stranded DNA(ssDNA)employing lambda exonuclease digestion in generating DNA aptamer[J]. World Journal of Microbiology and Biotechnology, 2011, 27(5):1167-1173. [35] Wakimoto Y, Jiang J, Wakimoto H. Isolation of single-stranded DNA[J]. Current Protocols in Molecular Biology, 2014, 107:2. 15. 1-2. 15. 9. [36] Stoltenburg R, Reinemann C, Strehlitz B. SELEX-a(r)evolutionary method to generate high-affinity nucleic acid ligands[J]. Biomolecular Engineering, 2007, 24(4):381-403. [37] Cao X, Li S, Chen L, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus[J]. Nucleic Acids Research, 2009, 37(14):4621-4628. [38] Guo WM, Kong KW, Brown CJ, et al. Identification and characterization of an eIF4e DNA aptamer that inhibits proliferation with high throughput sequencing[J]. Molecular Therapy Nucleic Acids, 2014, 3(12):e217. [39] Ruckman J, Green LS, Beeson J, et al. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor(VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain[J]. Journal of Biological Chemistry, 1998, 273(32):20556-20567. [40] Gao S, Hu B, Zheng X, et al. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity:From efficient selection to aptasensor application[J]. Biosensors & Bioelectronics, 2016, 79:938-944. [41] Wang RE, Wu H, Niu Y, et al. Improving the stability of aptamers by chemical modification[J]. Current Medicinal Chemistry, 2011, 18(27):4126-4138. [42] Lanford RE, Hildebrandteriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection[J]. Science, 2010, 327(5962):198-201. [43] Zhang Z, Ali MM, Eckert MA, et al. A polyvalent aptamer system for targeted drug delivery[J]. Biomaterials, 2013, 34(37):9728-35. [44] Zheng X, Hu B, Gao SX, et al. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation[J]. Toxicon Official Journal of the International Society on Toxinology, 2015, 7:41-47. |
[1] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[2] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[3] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[4] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[5] | LIU Ning-ning, WANG Xin-xin, LAN Xin-yue, CHU Hua-shuo, CHEN Xu, CHANG Shi-min, LI Teng-fei, XU Wen-tao. G-Triplex Visualization Nucleic Acid Sensor for the Detection of Tetracycline [J]. Biotechnology Bulletin, 2022, 38(10): 106-114. |
[6] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[7] | PENG Yuan-yuan, XIAO Xing-ning, ZHU Long-jiao, TAO Xiao-qi, XU Wen-tao. The Interaction Law Between Small Molecular Substances and Aptamers [J]. Biotechnology Bulletin, 2020, 36(8): 201-209. |
[8] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[9] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[10] | YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao. Screening and Evaluation Strategies of Cell-specific Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2020, 36(7): 235-244. |
[11] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[12] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[13] | LI Xue-tong, LIN Ying, ZHANG Yuan, LI Ying, LÜ Shu-xia, XU Wen-tao. Application Progress on Aptasensors in Detection of Food-born Pathogenic Bacteria [J]. Biotechnology Bulletin, 2019, 35(4): 125-138. |
[14] | WU Li-ting, SU Xue, LIN Jun-sheng. Research Advances on Aptamer-based Quartz Crystal Microbalance Sensors [J]. Biotechnology Bulletin, 2018, 34(9): 97-103. |
[15] | LI Ya-nan, ZHAO Jie, ZHANG Ao-zhe, TAN Yan, HUA Qian, ZHANG Zi-jian. The Latest Progress on the Methods for in Vitro Screening Aptamers [J]. Biotechnology Bulletin, 2017, 33(4): 78-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||