Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (4): 125-138.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0608
Previous Articles Next Articles
LI Xue-tong1,2, LIN Ying1, ZHANG Yuan2, LI Ying3, LÜ Shu-xia1, XU Wen-tao2
Received:
2018-07-04
Online:
2019-04-26
Published:
2019-05-05
LI Xue-tong, LIN Ying, ZHANG Yuan, LI Ying, LÜ Shu-xia, XU Wen-tao. Application Progress on Aptasensors in Detection of Food-born Pathogenic Bacteria[J]. Biotechnology Bulletin, 2019, 35(4): 125-138.
[1] Kaittanis C, Santra S, Perez JM.Emerging nanotechnology-based strategies for the identification of microbial pathogenesis[J]. Advanced Drug Delivery Reviews, 2010, 62(5):408-423. [2] Shinde SB, Fernandes CB, Patravale VB.Recent trends in in-vitro nanodiagnostics for detection of pathogens[J]. Journal of Controlled Release, 2012, 159(2):164-180. [3] Conrad R, Ellington AD.Detecting immobilized protein kinase C isozymes with RNA aptamers[J]. Analytical Biochemistry, 1996, 242(2):261. [4] Jayasena SD.Aptamers:an emerging class of molecules that rival antibodies in diagnostics[J]. Clinical Chemistry, 1999, 45(9):1628. [5] O’Sullivan CK. Aptasensors-the future of biosensing?[J]. Analytical & BioAnal Chem, 2002, 372(1):44-48. [6] Davydova A, Vorobjeva M, Pyshnyi D, et al.Aptamers against pathogenic microorganisms[J]. Critical Reviews in Microbiology, 2016, 42(6):847-865. [7] Bruno JG.In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection[J]. Biochemical & Biophysical Research Communicat-ions, 1997, 234(1):117-120. [8] Stoltenburg R, Reinemann C, Strehlitz B.FluMag-SELEX as an advantageous method for DNA aptamer selection[J]. Analytical & BioAnal Chem, 2005, 383(1):83-91. [9] Mendonsa SD, Bowser MT.In vitro evolution of functional DNA using capillary electrophoresis[J]. J Am Chem Soc, 2004, 126(1):20-21. [10] Jing Meng, Bowser Michael T.Isolation of DNA aptamers using micro free flow electrophoresis[J]. Lab Chip, 2011, 11(21):3703-3709. [11] Nitsche A, Kurth A, Dunkhorst A, et al.One-step selection of Vaccinia virus-binding DNA aptamers by MonolEX[J]. BMC Biotechnol, 2007, 7:48. [12] Peng L, Stephens BJ, Bonin K, et al.A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides[J]. Microscopy Research & Technique, 2007, 70(4):372-381. [13] Pan W, Xin P, Patrick S, et al.Primer-free aptamer selection using a random DNA library[J]. Journal of Visualized Experiments Jove, 2010, 629(41):369-385. [14] Lai YT, Destefano JJ.A primer-free method that selects high-affinity single-stranded DNA aptamers using thermostable RNA ligase[J]. Analytical Biochemistry, 2011, 414(2):246-253. [15] Bruno JG, Carrillo MP, Phillips T, et al.Anovel screening method for competitive FRET-aptamers applied to E. coli, assay development[J]. Journal of Fluorescence, 2010, 20(6):1211-1223. [16] Sando S, Ogawa A, Nishi T, et al.In vitro selection of RNA aptamer against Escherichia coli, release factor 1[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(5):1216-1220. [17] Li H, Ding X, Peng Z, et al.Aptamer selection for the detection of Escherichia coli K88[J]. Canadian Journal of Microbiology, 2011, 57(6):453-459. [18] Wu W, Zhang J, Zheng M, et al.An aptamer -based biosensor for colorimetric detection of Escherichia coli O157∶H7[J]. PLoS One, 2012, 7(11):e48999. [19] Kim SE, Su W, Cho MS, et al.Harnessing aptamers for electroche-mical detection of endotoxin[J]. Analytical Biochemistry, 2012, 424(1):12-20. [20] Amraee M, Oloomi M, Yavari A, et al.DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method[J]. Analytical Biochemistry, 2017, 536:36-44. [21] Bruno JG, Carrillo MP, Phillips T.In vitro, antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes[J]. Folia Microbiologica, 2008, 53(4):295-302. [22] Joshi R, Janagama H, Dwivedi HP, et al.Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars[J]. Mol Cell Probes, 2009, 23(1):20-28. [23] Labib M, Zamay AS, Kolovskaya OS, et al.Aptamer-based viability impedimetric sensor for bacteria[J]. Anal Chem, 2012, 84(21):8966-8969. [24] Dwivedi HP, Smiley RD, Jaykus LA.Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting[J]. Appl Microbiol Biotechnol, 2013, 97(8):3677-3686. [25] Duan N, Wu S, Chen X, et al.Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment(SELEX)[J]. Journal of Agricultural & Food Chemistry, 2013, 61(13):3229-3234. [26] Lavu PSR, Mondal B, Ramlal S, et al.Selection and characterization of aptamers using a modified whole-Cell bacterium SELEX for the detection of Salmonella enterica serovar Typhimurium[J]. Acs Combinatorial Science, 2016, 18(6):292-301. [27] Yang M, Peng Z, Ning Y, et al.Highly specific and cost-efficient detection of Salmonella paratyphi a combining aptamers with single-walled carbon nanotubes[J]. Sensors(Basel), 2013, 13(5):6865-6881. [28] Cao X, Li S, Chen L, et al.Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus[J]. Nucleic Acids Research, 2009, 37(14):4621-4628 [29] Moon J, Kim G, Park SB, et al.Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers[J]. Sensors(Basel), 2015, 15(4):8884-8897. [30] Mondal B, Ramlal S, Lavu PSR, et al.A combinatorial systematic evolution of Ligands by exponential enrichment method for selection of aptamer against protein targets[J]. Applied Microbiology & Biotechnology, 2015, 99(22):9791-9803. [31] Huang Y, Chen X, Duan N, et al.Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1[J]. Food Chemistry, 2015, 166:623-629. [32] Duan N, Wu S, Chen X, et al.Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus[J]. JAgric Food Chem, 2012, 60(16):4034-4038. [33] Ahn JY, Lee KA, Lee MJ, et al.Surface plasmon resonance aptamer biosensor for discriminating pathogenic bacteria[J]. Journal of Nanoscience & Nanotechnology, 2018, 18(3):1599-1605. [34] Suh SH, Dwivedi HP, Choi SJ, et al.Selection and characterization of DNA aptamers specific for Listeria species[J]. Analytical Biochemistry, 2014, 459(18):39-45. [35] Liu GQ, Lian YQ, Chao G, et al.In vitro Selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes[J]. Journal of Integrative Agriculture, 2014, 13(5):1121-1129. [36] Lee SH, Ahn JY, Lee KA, et al.Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes[J]. Biosens Bioelectron, 2015, 68:272-280. [37] Dwivedi HP, Smiley RD, Jaykus LA.Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX[J]. Appl Microbiol Biotechnol, 2010, 87(6):2323-2334. [38] Pan Q, Zhang XL, Wu HY, et al.Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(10):4052-4060. [39] Maeng JS, Kim N, Kim CT, et al.Rapid detection of food pathogens using RNA aptamers-immobilized slide[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(7):5138. [40] Dua P, Ren S, Sang WL, et al.Cell-SELEXBased identification of an RNA aptamer for Escherichia coli and its use in various detection formats[J]. Molecules & Cells, 2016, 39(11):807-813. [41] Lee YJ, Han SR, Maeng JS, et al.In vitro selection of Escherichia coli O157∶H7-specific RNA aptamer[J]. Biochemical and Biophysical Research Communications, 2012, 417(1):414-420. [42] Chinnappan R, Alamer S, Eissa S, et al.Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer[J]. Mikrochimica Acta, 2017, 185(1):61. [43] Tan SY, Acquah C, Sidhu A, et al.SELEX modifications and bioanalytical techniques for aptamer-target binding characterisation[J]. Critical Reviews in Anal Chem, 2016, 46(6):521-537. [44] Alfavian H, Gargari SLM, Rasoulinejad S, et al.Development of specified DNA aptamer binding to group A Streptococcus serotype M3[J]. Canadian Journal of Microbiology, 2016, 63(2). [45] Hamula Cl, Zhang H, Guan ll, et al. Selection of aptamers against live bacterial cells[J]. Anal Chem, 2008, 80(20):7812-7819. [46] Moon J, Kim G, Lee S, et al.Identification of Salmonella typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis[J]. Journal of Microbiological Methods, 2013, 95(2):162-166. [47] Drolet DW, Moonmcdermott L, Romig TS.An enzyme-Linked oligonucleotide assay[J]. Nature Biotechnology, 1996, 14(8):1021-1025. [48] Pan Q, Zhang XL, Wu HY, et al.Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(10):4052-4060. [49] Wang QY, Kang YJ.Bioprobes based on aptamer and silica fluorescent nanoparticles for bacteria Salmonella typhimurium detection[J]. Nanoscale Research Letters, 2016, 11(1):150. [50] Wang B, Park B, Xu B, et al.label-free biosensing of Salmonella enterica, serovars at single-cell level[J]. Journal of Nanobiotech-nology, 2017, 15(1):40. [51] Deng Q, German I, Buchanan D, et al.Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase[J]. Anal Chem, 2001, 73(22):5415-5421. [52] Stoltenburg R, Schubert T, Strehlitz B.In vitro selection and interaction studies of a DNA aptamer targeting protein A[J]. PLoS One, 2015, 10(7):e0134403. [53] Reich P, Stoltenburg R, Strehlitz B, et al.Development of an impedimetric aptasensor for the detection of Staphylococcus aureus[J]. Int J Mol Sci, 2017, 18(11):2484. [54] Jia F, Duan N, Wu S, et al.Impedimetric Salmonella, aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes[J]. Microchim Acta, 2016, 183(1):337-344. [55] Yuan J, Tao Z, Yu Y, et al.A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold Labeling[J]. Food Control, 2014, 37(1):188-192. [56] Duan N, Wu S, Ma X, et al.A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria[J]. Analytical Biochemistry, 2014, 454(1):1-6. [57] Duan N, Wu S, Yu Y, et al.A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as Labels[J]. Analytica Chimica Acta, 2013, 804(804C):151-158. [58] Duan N, Wu S, Dai S, et al.Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles[J]. Microchim Acta, 2015, 182(5-6):917-923. [59] Wu S, Duan N, Shi Z, et al.Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles Labels[J]. Anal Chem, 2014, 86(6):3100. [60] Zhang H, Ma X, Liu Y, et al.Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosens Bioelectron, 2015, 74:872-877. [61] Duan YF, Ning Y, Song Y, et al.Fluorescent aptasensor for the determination of Salmonella typhimurium, based on a graphene oxide platform[J]. Microchim Acta, 2014, 181(5-6):647-653. [62] Duan N, Chang B, Zhang H, et al.Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor[J]. Int J Food Microbiol, 2016, 218:38-43. [63] Teng J, Ye Y, Yao L, et al.Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus[J]. Microchim Acta, 2017, 184(9):3477-3485. [64] Duan N, Yan Y, Wu S, et al.Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering[J]. Food Control, 2016, 63:122-127. [65] Duan N, Shen M, Wu S, et al.Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus, by surface-enhanced Raman spectroscopy[J]. Microchim Acta, 2017, 184(8):1-8. [66] Li Y, Ye Y, Teng J, et al.In vitro isothermal nucleic acid amplification assisted surface-enhanced raman spectroscopic for ultrasensitive detection of vibrio parahaemolyticus[J]. Anal Chem, 2017, 89(18). [67] Hao L, Gu H, Duan N, et al.An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection[J]. Analytica Chimica Acta, 2017, 959:83-90. [68] Kurt H, Yüce M, Hussain B, et al.Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection[J]. Biosens Bioelectron, 2016, 81:280-286. |
[1] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[2] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[3] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[4] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[5] | LIU Ning-ning, WANG Xin-xin, LAN Xin-yue, CHU Hua-shuo, CHEN Xu, CHANG Shi-min, LI Teng-fei, XU Wen-tao. G-Triplex Visualization Nucleic Acid Sensor for the Detection of Tetracycline [J]. Biotechnology Bulletin, 2022, 38(10): 106-114. |
[6] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[7] | PENG Yuan-yuan, XIAO Xing-ning, ZHU Long-jiao, TAO Xiao-qi, XU Wen-tao. The Interaction Law Between Small Molecular Substances and Aptamers [J]. Biotechnology Bulletin, 2020, 36(8): 201-209. |
[8] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[9] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[10] | YUHAN Jie-yu, ZHU Li-ye, CHEN Xu, HE Xiao-yun, XU Wen-tao. Screening and Evaluation Strategies of Cell-specific Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2020, 36(7): 235-244. |
[11] | WANG Qi, YAN Chun-lei, GAO Hong-wei, WU Wei, YANG Qing-li. Research Progress of DNA Aptasensors for Foodborne Pathogen Detection [J]. Biotechnology Bulletin, 2020, 36(11): 245-258. |
[12] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[13] | WU Li-ting, SU Xue, LIN Jun-sheng. Research Advances on Aptamer-based Quartz Crystal Microbalance Sensors [J]. Biotechnology Bulletin, 2018, 34(9): 97-103. |
[14] | LI Ya-nan, ZHAO Jie, ZHANG Ao-zhe, TAN Yan, HUA Qian, ZHANG Zi-jian. The Latest Progress on the Methods for in Vitro Screening Aptamers [J]. Biotechnology Bulletin, 2017, 33(4): 78-82. |
[15] | PENG Li, ZHANG Xing-mei. Application of Aptamers Conjugated Inorganic Nanomaterial in Tumor Research [J]. Biotechnology Bulletin, 2017, 33(11): 48-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||