Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 193-205.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0908
Previous Articles Next Articles
SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao
Received:
2019-09-27
Online:
2020-02-26
Published:
2020-02-23
SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals[J]. Biotechnology Bulletin, 2020, 36(2): 193-205.
[1] Napoli C, Lemieux C, Jorgensen R.Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. Plant Cell, 1990, 2(4):279-289. [2] Romano N, Macino G.Quelling:Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences[J]. Molecular Microbiology, 1992, 6(22):3343-3353. [3] Fire A.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391:806-811. [4] Hammond SM, Boettcher S, Caudy AA, et al.Argonaute2, a link between genetic and biochemical analyses of RNAi[J]. Science, 2001, 293(5532):1146-1150. [5] Wargelius A, Ellingsen S, Fjose A.Double-stranded RNA induces specific developmental defects in zebrafish embryos[J]. Biochemical & Biophysical Research Communications, 1999, 263(1):156-161. [6] Wianny F, Zernicka-Goetz M.Specific interference with gene function by double-stranded RNA in early mouse development[J]. Nature Cell Biology, 2000, 2(2):70-75. [7] Biacchesi S.The reverse genetics applied to fish RNA viruses[J]. Veterinary Research, 2011, 42(1):12. [8] Guo S, Kemphues KJ.Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4):611-620. [9] Zamore PD, Tuschl T, Sharp PA, et al.RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1):25-33. [10] Qiu Y, Xu Y, Zhang Y, et al.Human virus-derived small RNAs can confer antiviral immunity in mammals[J]. Immunity, 2017, 46 (6):992-1004. [11] Stevenson M.Therapeutic potential of RNA interference[J]. N Engl J Med, 2004, 351(17):1772-1777. [12] Hannon GJ.RNA interference[J]. Nature, 2002, 418(6894):244-251. [13] Pereira P, Queiroz JA, Figueiras A, et al.Affinity approaches in RNAi-based therapeutics purification[J]. Journal of Chromatography B, 2016, 1021:45-56. [14] Paddison PJ, Caudy AA, Bernstein E, et al.Short hairpin RNAs(shRNAs)induce sequence-specific silencing in mammalian cells[J]. Genes & Development, 2002, 16(8):948-958. [15] Fuhrman JA.Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736):541-548. [16] Hall SJ, Delaporte A, Phillips MJ, et al.Blue frontiers:managing the environmental costs of aquaculture[R]. Working Papers, 2011. [17] 郭帅, 李家乐, 吕利群, 等. 草鱼呼肠孤病毒的致病机制及抗病毒新对策[J]. 渔业现代化, 2010, 37(1):37-42. [18] Escobedo-Bonilla CM, Vega-Peña S, Mejía-Ruiz CH.Efficacy of double-stranded RNA against white spot syndrome virus(WSSV)non-structural(orf89, wsv191)and structural(vp28, vp26)genes in the Pacific white shrimp Litopenaeus vannamei[J]. Journal of King Saud University-Science, 2015, 27(2):182-188. [19] Yodmuang S, Tirasophon W, Roshorm Y, et al.YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality[J]. Biochem Biophys Res Commun, 2006, 341(2):351-356. [20] 陈芸. 用RNA干扰(RNAi)抗草鱼出血病病毒的初步研究[D]. 北京:中国科学院研究生院, 2005. [21] Ma J, Zeng L, Fan Y, et al.Significant inhibition of two different genotypes of grass carp reovirus in vitro using multiple shRNAs expression vectors[J]. Virus Research, 2014, 189:47-55. [22] Su YC, Wu JL, Hong JR.Betanodavirus non-structural protein B2:a novel necrotic death factor that induces mitochondria-mediated cell death in fish cells[J]. Virology, 2009, 385(1):143-154. [23] Kim YS, Ke F, Lei XY, et al.Viral envelope protein 53R gene highly specific silencing and iridovirus resistance in fish cells by AmiRNA[J]. PLoS One, 2010, 5(4):e10308. [24] 周燕. RNA干扰对大鲵蛙病毒(CGSRV)主要功能基因表达与増殖影响的研究[D]. 雅安:四川农业大学, 2015. [25] Wu Y, Ling L, Yang LS, et al.Inhibition of white spot syndrome virus in Litopenaeus vannamei shrimp by sequence-specific siRNA[J]. Aquaculture, 2007, 271(1):21-30. [26] Rattanarojpong T, Khankaew S, Khunrae P, et al.Recombinant baculovirus mediates dsRNA specific to rr2 delivery and its protective efficacy against WSSV infection[J]. Journal of Biotechnology, 2016, 229:44-52. [27] 周俊芳, 杨先乐, 万夕和, 等. 不同靶点shRNA干扰对虾白斑综合征病毒增殖效果分析[J]. 华中农业大学学报, 2011, 30(1):105-108. [28] Robalino J, Bartlett T, Shepard E, et al.Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp:convergence of RNA interference and innate immunity in the invertebrate antiviral response[J]. Journal of Virology, 2005, 79(21):13561-13571. [29] Mejía CH, Vega S, Alvarez P, et al.Double-stranded RNA against white spot syndrome virus(WSSV)vp28 or vp26 reduced susceptibility of Litopenaeus vannamei to WSSV, and survivors exhibited decreased susceptibility in subsequent reinfections[J]. Journal of Invertebrate Pathology, 2011, 107(1):65-68. [30] Thammasorn T, Sangsuriya P, Meemetta W, et al.Large-scale production and antiviral efficacy of multi target double stranded RNA for the prevention of white spot syndrome virus(WSSV)in shrimp[J]. BMC Biotechnology, 2015, 15(1):1-7. [31] Westenberg M, Heinhuis B, Zuidema D, et al.siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus[J]. Virus Research, 2005, 114(1):133-139. [32] Sarathi M, Simon MC, Venkatesan C, et al.Oral administration of bacterially expressed VP28 dsRNA to protect Penaeus monodon from white spot syndrome virus[J]. Marine Biotechnology, 2008, 10(3):242-249. [33] Attasart P, Kaewkhaw R, Chimwai C, et al.Inhibition of white spot syndrome virus replication in Penaeus monodon by combined silencing of viral rr2 and shrimp PmRab7[J]. Virus Research, 2009, 145(1):127-133. [34] Alenton RR, Kondo H, Hirono I, et al.Gene silencing of VP9 gene impairs WSSV infectivity on Macrobrachium rosenbergii[J]. Virus Research, 2016, 214:65-70. [35] Jariyapong P, Weerachatyanukul W, Direkbusarakom S, et al.Enhancement of shrimp immunity against white spot syndrome virus by Macrobrachium rosenbergii, nodavirus-like particle encapsulated VP28 double-stranded RNA[J]. Aquaculture, 2015, 446:325-332. [36] Zhu F, Zhang X.The antiviral vp28-siRNA expressed in bacteria protects shrimp against white spot syndrome virus(WSSV)[J]. Aquaculture, 2011, 319(3):311-314. [37] 张衡, 谷力, 杨丰. 对虾白斑综合症病毒vp15基因的RNA干扰研究[J]. 应用海洋学学报, 2012, 31(1):47-52. [38] Saksmerprome V, Charoonnart P, Gangnonngiw W, et al.A novel and inexpensive application of RNAi technology to protect shrimp from viral disease[J]. Journal of Virological Methods, 2009, 162(1):213-217. [39] Saksmerprome V, Thammasorn T, Jitrakorn S, et al.Using double-stranded RNA for the control of Laem-Singh Virus(LSNV)in Thai P. monodon[J]. Journal of Biotechnology, 2013, 164(4):449-453. [40] Thammasorn T, Somchai P, Laosutthipong C, et al.Therapeutic effect of Artemia enriched with Escherichia coli expressing double-stranded RNA in the black tiger shrimp Penaeus monodon[J]. Antiviral Res, 2013, 100(1):202-206. [41] 李兵, 范玉顶, 李艳秋, 等. 化学合成小干扰RNA分子高效抑制草鱼呼肠孤病毒复制[J]. 病毒学报, 2009, 25(5):388-394. [42] 马杰. RNA基因干扰技术抑制草鱼呼肠孤病毒复制的研究[D]. 武汉:华中农业大学, 2013. [43] Schyth BD, Lorenzen N, Pedersen FS.Antiviral activity of small interfering RNAs:specificity testing using heterologous virus reveals interferon-related effects overlooked by conventional mismatch controls[J]. Virology, 2006, 349(1):134-141. [44] Ruiz S, Schyth BD, Encinas P, et al.New tools to study RNA interference to fish viruses:Fish cell lines permanently expressing siRNAs targeting the viral polymerase of viral hemorrhagic septicemia virus[J]. Antiviral Research, 2009, 82(3):148-156. [45] Kim MS, Kim KH.Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting the G gene[J]. Archives of Virology, 2011, 156(3):457-464. [46] Kim MS, Jee BY, Cho MY, et al.Fugu double U6 promoter-driven long double-stranded RNA inhibits proliferation of viral hemorrhagic septicemia virus(VHSV)in fish cell lines[J]. Archives of Virology, 2012, 157(6):1029-1038. [47] Bohle H, Lorenzen N, Schyth BD.Species specific inhibition of viral replication using dicer substrate siRNAs(DsiRNAs)targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus(VHSV)[J]. Antiviral Research, 2011, 90(3):187-194. [48] Wu HC, Wu JL, Chu HL, et al.RGNNV induces mitochondria-mediated cell death via newly synthesized protein dependent pathway in fish cells[J]. Fish & Shellfish Immunology, 2010, 29(3):451-463. [49] Wu HC, Chiu CS, Wu JL, et al.Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death[J]. Fish & Shellfish Immunology, 2008, 24(4):436-449. [50] Dang LT, Kondo H, Hirono I, et al.Inhibition of red seabream iridovirus(RSIV)replication by small interfering RNA(siRNA)in a cell culture system[J]. Antiviral Research, 2008, 77(2):142-149. [51] Zenke K, Nam YK, Kim KH.Development of siRNA expression vector utilizing rock bream beta-actin promoter:a potential therapeutic tool against viral infection in fish[J]. Appl Microbiol Biotechnol, 2010, 85(3):679-690. [52] Fouad AM, Soliman H, Abdallah ESH, et al.In-vitro inhibition of spring viremia of carp virus replication by RNA interference targeting the RNA-dependent RNA polymerase gene[J]. Journal of Virological Methods, 2019, 263:14-19. [53] Xie J, Lü L, Deng M, et al.Inhibition of reporter gene and Iridovirus-tiger frog virus in fish cell by RNA interference[J]. Virology, 2005, 338(1):43-52. [54] Assavalapsakul W, Kiem HK, Smith DR, et al.Silencing of PmYPR65 receptor prevents yellow head virus infection in Penaeus monodon[J]. Virus Research, 2014, 189:133-135. [55] Liu LK, Li WD, Gao Y, et al.A laminin-receptor-like protein regulates white spot syndrome virus infection by binding to the viral envelope protein VP28 in red claw crayfish Cherax quadricarinatus[J]. Developmental & Comparative Immunology, 2018, 79:186-194. [56] Wang H, Yu F, Li J, et al.Laminin receptor is an interacting partner for viral outer capsid protein VP5 in grass carp reovirus infection[J]. Virology, 2016, 490:59-68. [57] Sinthujaroen P, Tonganunt-Srithaworn M, Eurwilaichitr L, et al.Protection of Litopenaeus vannamei, against the white spot syndrome virus using recombinant Pm-fortilin expressed in Pichia pastoris[J]. Aquaculture, 2015, 435:450-457. [58] Haller O, Frese M, Kochs G.Mx proteins:mediators of innate resistance to RNA viruses[J]. Rev Sci Tech, 1998, 17(1):220-230. [59] Wu YC, Lu YF, Chi SC.Anti-viral mechanism of barramundi Mx against betanodavirus involves the inhibition of viral RNA synthesis through the interference of RdRp[J]. Fish & Shellfish Immunology, 2010, 28(3):467-475. [60] Sternberg EM.Neural regulation of innate immunity:a coordinated nonspecific host response to pathogens[J]. Nature Reviews Immunology, 2006, 6(4):318-328. [61] Hagen PMV, Hofland LJ, Bokum AMCT, et al.Neuropeptides and their receptors in the immune system[J]. Annals of Medicine, 1999, 31(S2):15-22. [62] Zuo H, Yuan J, Niu S, et al.A molting-inhibiting hormone-like protein from Pacific white shrimp, Litopenaeus vannamei, is involved in immune responses[J]. Fish & Shellfish Immunology, 2018, 72:544-551. [63] Wang Z, Sun B, Zhu F.Molecular characterization of diphthamide biosynthesis protein 7 in Marsupenaeus japonicus and its role in white spot syndrome virus infection[J]. Fish & Shellfish Immunology, 2018, 75:8-16. [64] Posiri P, Ongvarrasopone C, Panyim S.Rab5, an early endosomal protein required for yellow head virus infection of Penaeus monodon[J]. Aquaculture, 2016, 459:43-53. [65] Ongvarrasopone C, Chanasakulniyom M, Sritunyalucksana K, et al.Suppression of PmRab7 by dsRNA inhibits WSSV or YHV infection in shrimp[J]. Marine Biotechnology, 2008, 10(4):374-381. [66] Kongprajug A, Panyim S, Ongvarrasopone C.Suppression of PmRab11 inhibits YHV infection in Penaeus monodon[J]. Fish Shellfish Immunol, 2017, 66:433-444. [67] Liu F, Li S, Liu G, et al.Triosephosphate isomerase(TPI)facili-tates the replication of WSSV in Exopalaemon carinicauda[J]. Developmental & Comparative Immunology, 2017, 71:28-36. [68] Robalino J, Browdy CL, Prior S, et al.Induction of antiviral immunity by double-stranded RNA in a marine invertebrate[J]. Journal of Virology, 2004, 78(19):10442-10448. [69] Clarke BD, Mccoll KA, Ward AC, et al.ShRNAs targeting either the glycoprotein or polymerase genes inhibit Viral haemorrhagic septicaemia virus replication in zebrafish ZF4 cells[J]. Antiviral Research, 2017, 141:124-132. [70] Dang LT, Kondo H, Aoki T, et al.Engineered virus-encoded pre-microRNA(pre-miRNA)induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line:convergence of RNAi-related pathways and IFN-related pathways in antiviral response[J]. Antiviral Res, 2008, 80(3):316-323. [71] Pauletto M, Segarra A, Montagnani C, et al.Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication[J]. The Journal of Experimental Biology, 2017, 220:3671-3685. [72] Senapin S, Phiwsaiya K, Anantasomboon G, et al.Knocking down a Taura syndrome virus(TSV)binding protein Lamr is lethal for the whiteleg shrimp Penaeus vannamei[J]. Fish & Shellfish Immunology, 2010, 29(3):422-429. [73] 冯肖舞. 髓样白血病因子(MLF)在日本囊对虾抗病毒抗细菌免疫中的功能研究[D]. 济南:山东大学, 2018. [74] Li DL, Chang XJ, Xie XL, et al.A thymosin repeated protein1 reduces white spot syndrome virus replication in red claw crayfish, Cherax quadricarinatus[J]. Developmental & Comparative Immunology, 2018, 84:109-116. [75] Phetrungnapha A, Ho T, Udomkit A, et al.Molecular cloning and functional characterization of Argonaute-3 gene from Penaeus monodon[J]. Fish & Shellfish Immunology, 2013, 35(3):874-882. [76] Hwang HJ, Chang HM, Han GK, et al.Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line[J]. Journal of Virology, 2007, 81(24):13816-13824. [77] Ongvarrasopone C, Saejia P, Chanasakulniyom M, et al.Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA[J]. Archives of Virology, 2011, 156(7):1117-1123. [78] Attasart P, Kaewkhaw R, Chimwai C, et al.Inhibition of white spot syndrome virus replication in Penaeus monodon by combined silencing of viral rr2 and shrimp PmRab7[J]. Virus Research, 2009, 145(1):127-133. [79] 战文斌. 水产动物病害学[M]. 北京:中国农业出版社, 2006. [80] Ohashi H, Umeda N, Hirazawa N, et al.Expression of vasa(vas)-related genes in germ cells and specific interference with gene functions by double-stranded RNA in the monogenean, Neobenedenia girellae[J]. International Journal for Parasitology, 2007, 37(5):515-523. [81] Pike AW.Sea lice-Major pathogens of farmed atlantic salmon[J]. Parasitology Today, 1989, 5(9):291-297. [82] Pike AW, Wadsworth S L.Sealice on salmonids:their biology and control[J]. Advances in Parasitology, 1999, 44:233-337. [83] Torrissen O, Jones S, Asche F, et al.Salmon lice-impact on wild salmonids and salmon aquaculture[J]. Journal of Fish Diseases, 2013, 36(3):171-194. [84] Aaen SM, Helgesen KO, Bakke MJ, et al.Drug resistance in sea lice:a threat to salmonid aquaculture[J]. Trends in Parasito-logy, 2015, 31(2):72-81. [85] Dalvin S, Frost P, Biering E, et al.Functional characterisation of the maternal yolk-associated protein(LsYAP)utilising systemic RNA interference in the salmon louse(Lepeophtheirus salmonis)(Crustacea:Copepoda)[J]. International Journal for Parasitology, 2009, 39(13):1407-1415. [86] Tröβe C, Kongshaug H, Dondrup M, et al.Characterisation of iron regulatory protein 1A and 1B in the blood-feeding copepod Lepeophtheirus salmonis[J]. Experimental Parasitology, 2015, 157:1-11. [87] Eichner C, Dalvin S, Skern-Mauritzen R, et al.Characterization of a novel RXR receptor in the salmon louse(Lepeophtheirus salmonis, Copepoda)regulating growth and female reproduction[J]. BMC Genomics, 2015, 16(1):81. [88] Sandlund L, Kongshaug H, Nilsen F, et al.Molecular characteriza-tion and functional analysis of components of the TOR pathway of the salmon louse, Lepeophtheirus salmonis(Krøyer, 1838)[J]. Experimental Parasitology, 2018, 188:83-92. [89] Borchel A, Nilsen F.A novel gene-family involved in spermato-phore generation in the economically important salmon louse Lepeo-phtheirus salmonis[J]. Molecular Reproduction and Develop-ment, 2018, 85:478-489. [90] Sandlund L, Nilsen F, Male R, et al.The ecdysone receptor(EcR)is a major regulator of tissue development and growth in the marine salmonid ectoparasite;Lepeophtheirus salmonis(Copepoda;Caligidae)[J]. Molecular and Biochemical Parasitology, 2016, 208(2):65-73. [91] Eichner C, Harasimczuk E, Nilsen F, et al. Molecular characterisa-tion and functional analysis of LsChi2, a chitinase found in the salmon louse(Lepeophtheirus salmonis salmonis, Krøyer1838)[J]. Experimental Parasitology,2015, 151-152:39-48. [92] Carpio Y, Basabe L, Acosta J, et al.Novel gene isolated from Caligus rogercresseyi:A promising target for vaccine development against sea lice[J]. Vaccine, 2011, 29(15):2810-2820. [93] Komisarczuk AZ, Grotmol S, Nilsen F.Ionotropic receptors signal host recognition in the salmon louse(Lepeophtheirus salmonis, Copepoda)[J]. PLoS One, 2017, 12(6):e0178812. [94] Eichner C, Nilsen F, Grotmol S, et al.A method for stable gene knock-down by RNA interference in larvae of the salmon louse(Lepeophtheirus salmonis)[J]. Experimental Parasitology, 2014, 140:44-51. [95] Øvergård AC, Eichner C, Nilsen F, et al.Molecular characterization and functional analysis of a salmon louse(Lepeophtheirus salmonis, Krøyer 1838)heme peroxidase with a potential role in extracellular matrixes[J]. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2017, 206:1-10. [96] Heggland EI, Tröβe C, Eichner C, et al.Heavy and light chain homologs of ferritin are essential for blood-feeding and egg production of the ectoparasitic copepod Lepeophtheirus salmonis[J]. Molecular and Biochemical Parasitology, 2019, 232:111197. [97] Campbell EM, Pert CC, Bowman AS.RNA-interference methods for gene-knockdown in the sea louse, Lepeophtheirus salmonis:studies on a putative prostaglandin E synthase[J]. Parasitology, 2009, 136:867-874. |
[1] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[2] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[3] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[4] | SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 228-239. |
[5] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[6] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
[7] | LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs [J]. Biotechnology Bulletin, 2022, 38(2): 218-226. |
[8] | LUO Xue-cong, AN Meng-nan, WU Yuan-hua, XIA Zi-hao. Applications of Recombinase Polymerase Amplification in Plant Virus Detection [J]. Biotechnology Bulletin, 2022, 38(2): 269-280. |
[9] | CHENG Wen-yu, ZHANG Bo-xin, ZHAO Hong-yuan, CHEN Yan, XIE Juan-ping. Research Progress in Natural Products Against Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2022, 38(12): 127-136. |
[10] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[11] | LI Dan, DU Meng-tan, XIU Ming-xia, LIU Xing-jian, ZHANG Zhi-fang, LI Yi-nv. Expression of Sheep Interferon Alpha in Silkworm and Determination of Its Activity Against Peste Des Petits Ruminants Virus [J]. Biotechnology Bulletin, 2022, 38(1): 187-193. |
[12] | XU Jin-yi, NA Bin-bin, LIU Shun, CHEN Chao, SUN Hong, ZHENG Yu-long. Excellent Lactic Acid Bacteria for Silage and Their Application [J]. Biotechnology Bulletin, 2021, 37(9): 39-47. |
[13] | ZHANG Qian, XUE Yu, HE Ling-xiao, WU Jiang, CHENG Yu-yuan, YANG Tie-zhao, DING Yong-le, XU Shi-xiao, XUE Gang. Effects of Planting Density,Amount of Nitrogen Application and Left Leaf Number on the Highlighting of Flavor Style in Qushou 1 [J]. Biotechnology Bulletin, 2021, 37(6): 24-35. |
[14] | WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants [J]. Biotechnology Bulletin, 2021, 37(6): 272-278. |
[15] | ZHAO Hong-yuan, WANG Zhao, CHENG Wen-yu, MA Ning-ning, LI Man, WEI Xiao-li. Progress on Antiviral Agents Against African Swine Fever Virus [J]. Biotechnology Bulletin, 2021, 37(5): 174-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||