Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 171-180.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0224
Previous Articles Next Articles
KANG Ling-yun1(), CHEN Jian-sheng2, GAN Han-ling2, HAN Lu-lu1, FENG Hai-xia3, DIAO Qi-yu1, XING Kai2, CUI Kai1()
Received:
2021-02-26
Online:
2021-06-26
Published:
2021-07-08
Contact:
CUI Kai
E-mail:18821622269@163.com;cuikai@caas.cn
KANG Ling-yun, CHEN Jian-sheng, GAN Han-ling, HAN Lu-lu, FENG Hai-xia, DIAO Qi-yu, XING Kai, CUI Kai. Effects of Dietary Protein Deficiency Followed by Realimentation on the Antioxidation of Lamb Based on Transcriptomics Analysis[J]. Biotechnology Bulletin, 2021, 37(6): 171-180.
项目Item | 饲粮Diet | ||||
---|---|---|---|---|---|
开食料Starter | 代乳粉Milk replacer | ||||
NPL组 | LPL组 | NPL组 | LPL组 | ||
成分Ingredients/% | |||||
玉米Corn | 49.10 | 65.90 | - | - | |
豆粕Soybean | 28.90 | 12.10 | - | - | |
麸皮Bran | 8.00 | 8.00 | - | - | |
苜蓿Alfalfa | 10.00 | 10.00 | - | - | |
预混料Premix | 4.00 | 4.00 | - | - | |
总计Total | 100.00 | 100.00 | - | - | |
营养水平Nutrient level/% | |||||
干物质DM | 89.65 | 90.36 | 97.73 | 97.94 | |
粗蛋白CP | 21.08 | 15.02 | 25.08 | 19.23 | |
代谢能DE(MJ·kg-1) | 13.06 | 13.06 | 18.38 | 18.32 | |
粗脂肪EE | 1.70 | 1.70 | 11.18 | 12.98 | |
粗灰分Ash | 7.40 | 6.50 | 5.29 | 4.85 | |
中性洗涤纤维NDF | 15.46 | 14.79 | - | - | |
酸性洗涤纤维ADF | 7.84 | 7.47 | - | - | |
钙Ca | 0.96 | 0.98 | 1.13 | 1.09 | |
磷P | 0.57 | 0.51 | 0.51 | 0.48 |
Table 1 Ingredients and nutrient composition of the milk replacer and starter(dry matter basis)
项目Item | 饲粮Diet | ||||
---|---|---|---|---|---|
开食料Starter | 代乳粉Milk replacer | ||||
NPL组 | LPL组 | NPL组 | LPL组 | ||
成分Ingredients/% | |||||
玉米Corn | 49.10 | 65.90 | - | - | |
豆粕Soybean | 28.90 | 12.10 | - | - | |
麸皮Bran | 8.00 | 8.00 | - | - | |
苜蓿Alfalfa | 10.00 | 10.00 | - | - | |
预混料Premix | 4.00 | 4.00 | - | - | |
总计Total | 100.00 | 100.00 | - | - | |
营养水平Nutrient level/% | |||||
干物质DM | 89.65 | 90.36 | 97.73 | 97.94 | |
粗蛋白CP | 21.08 | 15.02 | 25.08 | 19.23 | |
代谢能DE(MJ·kg-1) | 13.06 | 13.06 | 18.38 | 18.32 | |
粗脂肪EE | 1.70 | 1.70 | 11.18 | 12.98 | |
粗灰分Ash | 7.40 | 6.50 | 5.29 | 4.85 | |
中性洗涤纤维NDF | 15.46 | 14.79 | - | - | |
酸性洗涤纤维ADF | 7.84 | 7.47 | - | - | |
钙Ca | 0.96 | 0.98 | 1.13 | 1.09 | |
磷P | 0.57 | 0.51 | 0.51 | 0.48 |
分组 Group | 样品名 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后碱基数量Clean bases | Q20比例Q20 ratio /% | Q30 比例Q30/% | GC含量 GC content /% |
---|---|---|---|---|---|---|---|
NPL60 | NP1 | 59304426 | 57538562 | 8.63G | 96.40 | 91.31 | 49.26 |
NP2 | 52921108 | 50561072 | 7.58G | 95.47 | 89.64 | 47.87 | |
LPL60 | LP1 | 55080900 | 53703926 | 8.06G | 96.61 | 91.75 | 50.04 |
LP2 | 41189720 | 40057846 | 6.01G | 96.33 | 91.07 | 48.88 | |
NPL90 | NP3 | 62798110 | 60592144 | 9.09G | 96.13 | 90.98 | 48.40 |
NP4 | 42917164 | 41617614 | 6.24G | 96.41 | 91.44 | 48.88 | |
LPL90 | LP3 | 54828428 | 53056652 | 7.96G | 96.65 | 91.91 | 49.26 |
LP4 | 60109450 | 58311854 | 8.75G | 96.23 | 91.03 | 49.35 |
Table 2 Data information of all samples collected by RNA-seq
分组 Group | 样品名 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后碱基数量Clean bases | Q20比例Q20 ratio /% | Q30 比例Q30/% | GC含量 GC content /% |
---|---|---|---|---|---|---|---|
NPL60 | NP1 | 59304426 | 57538562 | 8.63G | 96.40 | 91.31 | 49.26 |
NP2 | 52921108 | 50561072 | 7.58G | 95.47 | 89.64 | 47.87 | |
LPL60 | LP1 | 55080900 | 53703926 | 8.06G | 96.61 | 91.75 | 50.04 |
LP2 | 41189720 | 40057846 | 6.01G | 96.33 | 91.07 | 48.88 | |
NPL90 | NP3 | 62798110 | 60592144 | 9.09G | 96.13 | 90.98 | 48.40 |
NP4 | 42917164 | 41617614 | 6.24G | 96.41 | 91.44 | 48.88 | |
LPL90 | LP3 | 54828428 | 53056652 | 7.96G | 96.65 | 91.91 | 49.26 |
LP4 | 60109450 | 58311854 | 8.75G | 96.23 | 91.03 | 49.35 |
基因ID Gene ID | 基因名称 Gene symbol | 基因描述 Gene description | 差异倍数 Fold change | P |
---|---|---|---|---|
ENSOARG00000000042 | CYP2E1 | Cytochrome P450,family 2,subfamily E,polypeptide 1 | -1.75 | 0.0424 |
ENSOARG00000000591 | LOC101105314 | Cytochrome P450 2C42-like | -6.74 | 0.0180 |
ENSOARG00000004562 | ZADH2 | Zinc binding alcohol dehydrogenase domain containing 2 | -1.77 | 0.0433 |
ENSOARG00000005352 | - | - | -1.91 | 0.0314 |
ENSOARG00000005747 | - | - | -3.17 | 0.0032 |
ENSOARG00000007128 | CYP2A6 | Cytochrome P450 2A6 | -2.59 | 0.0010 |
ENSOARG00000007880 | SOD1 | Superoxide dismutase 1 | -2.69 | 0.0267 |
ENSOARG00000009277 | LOC101107119 | Prostaglandin F synthase 1-like | -2.61 | 0.0009 |
ENSOARG00000011087 | LOC101109111 | Dihydrodiol dehydrogenase 3 | -2.02 | 0.0140 |
ENSOARG00000011663 | -- | - | -3.26 | 0.0001 |
ENSOARG00000011769 | PYROXD2 | Pyridine nucleotide-disulphide oxidoreductase domain 2 | -2.32 | 0.0085 |
ENSOARG00000012581 | TM7SF2 | Transmembrane 7 superfamily member 2 | -2.50 | 0.0013 |
ENSOARG00000012705 | ALDH1A1 | Aldehyde dehydrogenase 1 family member A1 | -2.40 | 0.0113 |
ENSOARG00000013364 | HHIPL2 | HHIP like 2 | -2.72 | 0.0433 |
ENSOARG00000013700 | LOC101114408 | Carbonyl reductase[NADPH]1 | -1.90 | 0.0276 |
ENSOARG00000014759 | GSTA1-1 | Microsomal glutathione-S-transferase 1-1 | -2.15 | 0.0082 |
ENSOARG00000017584 | GSTA1 | Glutathione S-transferase alpha 1 | -3.14 | 0.0022 |
ENSOARG00000019285 | LOC101107831 | Glutathione S-transferase Mu 1-like | -4.75 | 1.73E-05 |
ENSOARG00000019297 | LOC101108092 | Glutathione S-transferase Mu 1 | -3.13 | 0.0010 |
ENSOARG00000020412 | PHGDH | Phosphoglycerate dehydrogenase | -2.19 | 0.0054 |
ENSOARG00000020582 | MGST1 | Microsomal glutathione S-transferase 1 | -1.89 | 0.0254 |
Novel00632 | - | - | -3.51 | 0.0033 |
Novel02088 | - | - | -2.02 | 0.0425 |
Table 3 Different expressed genes related to antioxidation process
基因ID Gene ID | 基因名称 Gene symbol | 基因描述 Gene description | 差异倍数 Fold change | P |
---|---|---|---|---|
ENSOARG00000000042 | CYP2E1 | Cytochrome P450,family 2,subfamily E,polypeptide 1 | -1.75 | 0.0424 |
ENSOARG00000000591 | LOC101105314 | Cytochrome P450 2C42-like | -6.74 | 0.0180 |
ENSOARG00000004562 | ZADH2 | Zinc binding alcohol dehydrogenase domain containing 2 | -1.77 | 0.0433 |
ENSOARG00000005352 | - | - | -1.91 | 0.0314 |
ENSOARG00000005747 | - | - | -3.17 | 0.0032 |
ENSOARG00000007128 | CYP2A6 | Cytochrome P450 2A6 | -2.59 | 0.0010 |
ENSOARG00000007880 | SOD1 | Superoxide dismutase 1 | -2.69 | 0.0267 |
ENSOARG00000009277 | LOC101107119 | Prostaglandin F synthase 1-like | -2.61 | 0.0009 |
ENSOARG00000011087 | LOC101109111 | Dihydrodiol dehydrogenase 3 | -2.02 | 0.0140 |
ENSOARG00000011663 | -- | - | -3.26 | 0.0001 |
ENSOARG00000011769 | PYROXD2 | Pyridine nucleotide-disulphide oxidoreductase domain 2 | -2.32 | 0.0085 |
ENSOARG00000012581 | TM7SF2 | Transmembrane 7 superfamily member 2 | -2.50 | 0.0013 |
ENSOARG00000012705 | ALDH1A1 | Aldehyde dehydrogenase 1 family member A1 | -2.40 | 0.0113 |
ENSOARG00000013364 | HHIPL2 | HHIP like 2 | -2.72 | 0.0433 |
ENSOARG00000013700 | LOC101114408 | Carbonyl reductase[NADPH]1 | -1.90 | 0.0276 |
ENSOARG00000014759 | GSTA1-1 | Microsomal glutathione-S-transferase 1-1 | -2.15 | 0.0082 |
ENSOARG00000017584 | GSTA1 | Glutathione S-transferase alpha 1 | -3.14 | 0.0022 |
ENSOARG00000019285 | LOC101107831 | Glutathione S-transferase Mu 1-like | -4.75 | 1.73E-05 |
ENSOARG00000019297 | LOC101108092 | Glutathione S-transferase Mu 1 | -3.13 | 0.0010 |
ENSOARG00000020412 | PHGDH | Phosphoglycerate dehydrogenase | -2.19 | 0.0054 |
ENSOARG00000020582 | MGST1 | Microsomal glutathione S-transferase 1 | -1.89 | 0.0254 |
Novel00632 | - | - | -3.51 | 0.0033 |
Novel02088 | - | - | -2.02 | 0.0425 |
GO条目 GO term | 基因符号 Gene symbol | P |
---|---|---|
氧化还原酶活性 Oxidoreductase activity GO:0016491 | CYP2E1,ZADH2,SOD1,PYROXD2,CYP2A6,TM7SF2,ALDH1A1,HHIPL2,PHGDH, MGST1,NADPH1,Novel00632,Novel02088,LOC101105314,LOC101107119,LOC101109111, ENSOARG00000011663,ENSOARG00000005352,ENSOARG00000005747 | 0.00043 |
谷胱甘肽转移酶活性 Glutathione transferase activity GO:0004364 | MGST1,GSTM1,GSTA1 GSTA1-1 LOC101107831 | 0.00043 |
氧化还原过程 Oxidation-reduction process GO:0055114 | TM7SF2,ALDH1A1,HHIPL2,NADPH1,PHGDH,MGST1,Novel00632,CYP2E1, ZADH2,GSPT1,SOD1,PYROXD2,LOC101105314,LOC101107119,LOC101109111, ENSOARG00000005352,ENSOARG00000005747,ENSOARG00000011663 | 0.003962 |
Table 4 GO terms and genes related to antioxidation process
GO条目 GO term | 基因符号 Gene symbol | P |
---|---|---|
氧化还原酶活性 Oxidoreductase activity GO:0016491 | CYP2E1,ZADH2,SOD1,PYROXD2,CYP2A6,TM7SF2,ALDH1A1,HHIPL2,PHGDH, MGST1,NADPH1,Novel00632,Novel02088,LOC101105314,LOC101107119,LOC101109111, ENSOARG00000011663,ENSOARG00000005352,ENSOARG00000005747 | 0.00043 |
谷胱甘肽转移酶活性 Glutathione transferase activity GO:0004364 | MGST1,GSTM1,GSTA1 GSTA1-1 LOC101107831 | 0.00043 |
氧化还原过程 Oxidation-reduction process GO:0055114 | TM7SF2,ALDH1A1,HHIPL2,NADPH1,PHGDH,MGST1,Novel00632,CYP2E1, ZADH2,GSPT1,SOD1,PYROXD2,LOC101105314,LOC101107119,LOC101109111, ENSOARG00000005352,ENSOARG00000005747,ENSOARG00000011663 | 0.003962 |
KEGG通路 KEGG pathway | 差异表达基因 DEGs | P |
---|---|---|
DEGs显著富集通路(LPL60 vs. NPL60) Significant enrichment pathway based on the DEGs(LPL60 vs. NPL60) | ||
化学物致癌作用 Chemical carcinogenesis | CYP2E1,GSTA1,CCBL1,MGST1,Novel01136,ENSOARG00000007128, ENSOARG00000013700,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 5.07E-09 |
细胞色素P450对外源物质代谢 Metabolism of xenobiotics by cytochrome P450 | MGST1,GSTA1,CYP2E1,Novel01136,ENSOARG00000007128, ENSOARG00000013700,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 1.47E-08 |
细胞色素P450对药物代谢 Drug metabolism-cytochrome P450 | MGST1,GSTA1,CYP2E1,Novel01136,ENSOARG00000014759, ENSOARG00000019285,ENSOARG00000019297 | 3.65E-06 |
谷胱甘肽代谢 Glutathione metabolism | MGST1,GSTA1,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 4.61E-04 |
类固醇激素生物合成 Steroid hormone biosynthesis | CYP2E1. Novel01136,ENSOARG00000009277,ENSOARG00000011087, ENSOARG00000011663 | 9.85E-04 |
花生四烯酸代谢 Arachidonic acid metabolism | CYP2E1,ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663, ENSOARG00000013700 | 0.0016 |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine,serine,and threonine metabolism | GLYCTK,ALAS1,PSPH,PHGDH | 0.0017 |
代谢通路 Metabolic pathways | CYP2E1,NADSYN1,PEMT,GLYCTK,ALAS1,CCBL1,PSPH,DCTPP1,TM7SF2, ALDH1A1,PHGDH,Novel01136,ENSOARG00000005352,ENSOARG00000007808, ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663, ENSOARG00000013700 | 0.0053 |
核酸剪切修复 Nucleotide excision repair | Novel00167,Novel01238,Novel00501 | 0.0215 |
卵巢类固醇生成Ovarian steroidogenesis | ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663 | 0.0393 |
细胞因子受体相互作用 Cytokine-cytokine receptor interaction | FLT4,KDR,IL6ST,LIFR,TGFBR1,FLT1,IFNAR1E,TGFBR2,IL13RA1,CSF2RB,CSF3R,ENSOARG00000019477 | 0.0011 |
DEGs显著富集通路(LPL90 vs. NPL90) Significantly enriched pathway based on the DEGs(LPL90 vs. NPL90) | ||
酪氨酸代谢Tyrosine metabolism | ENSOARG00000007808 | 0.0057 |
Table 5 KEGG pathway enrichment analysis of different expressed genes
KEGG通路 KEGG pathway | 差异表达基因 DEGs | P |
---|---|---|
DEGs显著富集通路(LPL60 vs. NPL60) Significant enrichment pathway based on the DEGs(LPL60 vs. NPL60) | ||
化学物致癌作用 Chemical carcinogenesis | CYP2E1,GSTA1,CCBL1,MGST1,Novel01136,ENSOARG00000007128, ENSOARG00000013700,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 5.07E-09 |
细胞色素P450对外源物质代谢 Metabolism of xenobiotics by cytochrome P450 | MGST1,GSTA1,CYP2E1,Novel01136,ENSOARG00000007128, ENSOARG00000013700,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 1.47E-08 |
细胞色素P450对药物代谢 Drug metabolism-cytochrome P450 | MGST1,GSTA1,CYP2E1,Novel01136,ENSOARG00000014759, ENSOARG00000019285,ENSOARG00000019297 | 3.65E-06 |
谷胱甘肽代谢 Glutathione metabolism | MGST1,GSTA1,ENSOARG00000014759,ENSOARG00000019285, ENSOARG00000019297 | 4.61E-04 |
类固醇激素生物合成 Steroid hormone biosynthesis | CYP2E1. Novel01136,ENSOARG00000009277,ENSOARG00000011087, ENSOARG00000011663 | 9.85E-04 |
花生四烯酸代谢 Arachidonic acid metabolism | CYP2E1,ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663, ENSOARG00000013700 | 0.0016 |
甘氨酸、丝氨酸和苏氨酸代谢 Glycine,serine,and threonine metabolism | GLYCTK,ALAS1,PSPH,PHGDH | 0.0017 |
代谢通路 Metabolic pathways | CYP2E1,NADSYN1,PEMT,GLYCTK,ALAS1,CCBL1,PSPH,DCTPP1,TM7SF2, ALDH1A1,PHGDH,Novel01136,ENSOARG00000005352,ENSOARG00000007808, ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663, ENSOARG00000013700 | 0.0053 |
核酸剪切修复 Nucleotide excision repair | Novel00167,Novel01238,Novel00501 | 0.0215 |
卵巢类固醇生成Ovarian steroidogenesis | ENSOARG00000009277,ENSOARG00000011087,ENSOARG00000011663 | 0.0393 |
细胞因子受体相互作用 Cytokine-cytokine receptor interaction | FLT4,KDR,IL6ST,LIFR,TGFBR1,FLT1,IFNAR1E,TGFBR2,IL13RA1,CSF2RB,CSF3R,ENSOARG00000019477 | 0.0011 |
DEGs显著富集通路(LPL90 vs. NPL90) Significantly enriched pathway based on the DEGs(LPL90 vs. NPL90) | ||
酪氨酸代谢Tyrosine metabolism | ENSOARG00000007808 | 0.0057 |
[1] | Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction:The protein and methionine connection[J]. Biochim et Biophys Acta BBA Bioenerg, 2006, 1757(5/6):496-508. |
[2] | 徐少庭, 徐晨晨, 罗海玲. 饲粮抗氧化剂对肌肉嫩度的影响及作用机制[J]. 动物营养学报, 2017, 29(8):2676-2680. |
Xu ST, Xu CC, Luo HL. Effects and mechanisms of dietary antioxidants on meat tenderness[J]. Chin J Animal Nutr, 2017, 29(8):2676-2680. | |
[3] |
Sohal RS, Ku HH, Agarwal S, et al. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse[J]. Mech Ageing Dev, 1994, 74(1/2):121-133.
doi: 10.1016/0047-6374(94)90104-X URL |
[4] |
He ZX, Sun ZH, Tan ZL, et al. Effects of maternal protein or energy restriction during late gestation on antioxidant status of plasma and immune tissues in postnatal goats[J]. J Anim Sci, 2012, 90(12):4319-4326.
doi: 10.2527/jas.2012-5088 pmid: 22952363 |
[5] | 张帆, 崔凯, 王杰, 等. 妊娠后期母羊饲粮营养水平对产后羔羊生长性能、器官发育和血清抗氧化指标的影响[J]. 动物营养学报, 2017, 29(2):636-644. |
Zhang F, Cui K, Wang J, et al. Effects of maternal dietary nutrient level in late gestation on growth performance, organ development and serum antioxidant capacity of postpartum lambs[J]. Chin J Animal Nutr, 2017, 29(2):636-644. | |
[6] | 谷春梅, 施用晖, 乐国伟. 高蛋白日粮对小鼠胰腺活性氧自由基产生的影响[J]. 吉林农业大学学报, 2007, 29(6):679-682. |
Gu CM, Shi YH, Le GW. Effect of high protein diet on generation of reactive oxygen species in pancreas of mice[J]. J Jilin Agric Univ, 2007, 29(6):679-682. | |
[7] | 李东东, 李宗锐, 丁雪梅, 等. 不同粗蛋白质水平饲粮添加外源蛋白酶对肉鸡生产性能、血清生化指标和抗氧化功能的影响[J]. 动物营养学报, 2015, 27(9):2820-2831. |
Li DD, Li ZR, Ding XM, et al. Effects of different crude protein levels diet supplemented with exogenous protease on performance, serum biochemical indices and antioxidant function of broilers[J]. Chin J Animal Nutr, 2015, 27(9):2820-2831. | |
[8] | 耿红红, 张敬旸, 李莲, 等. RNA-seq转录组测序分析不同季节对槟榔江水牛精液品质的影响[J]. 畜牧兽医学报, 2016, 47(7):1373-1380. |
Geng HH, Zhang JY, Li L, et al. Semen quality analysis of betelnut-Jiang buffalo in different seasons by RNA-seq[J]. Chin J Animal Vet Sci, 2016, 47(7):1373-1380. | |
[9] | 孟宪然, 杜琛, 王静, 等. 基于RNA-Seq识别山羊肉品质候选基因[J]. 畜牧兽医学报, 2015, 46(8):1300-1307. |
Meng XR, Du C, Wang J, et al. RNA-seq approach for identifying candidate genes of meat quality in goats[J]. Chin J Animal Vet Sci, 2015, 46(8):1300-1307. | |
[10] | 崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7):1-9. |
Cui K, Wu WW, Diao QY. Application and research progress on transcriptomics[J]. Biotechnol Bull, 2019, 35(7):1-9. | |
[11] | 屠焰, 刁其玉, 岳喜新. 一种0-3月龄羔羊的代乳品及其制备方法:CN102894218B[P], 2013-01-30. |
Tu Y, Diao QY, Yue XX. Milk replacer of 0-3 month lambs and production method thereof:CN102894218B[P], 2013-01-30. | |
[12] | 王桂秋. 营养水平对羔羊物质消化的影响及羔羊早期断奶时间的研究[D]. 北京:中国农业科学院, 2005. |
Wang GQ. Study on nutrition utilization of lambs when fed milk replacers of different nutrition levels and early-weaned time of lambs[D]. Beijing:Chinese Academy of Agricultural Sciences, 2005. | |
[13] | 中华人民共和国农业部. 中华人民共和国农业行业标准:肉羊饲养标准 NY/T 816—2004[S]. 北京: 中国农业出版社, 2004. |
Ministry of Agriculture of the People’s Republic of China. Agriculture Standard of the People’s Republic of China:Feeding standard of meat-producing sheep and goats. NY/T 816—2004[S]. Beijing: Chinese Agriculture Press, 2004. | |
[14] |
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3):562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[15] |
Wang L, Feng Z, Wang X, et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1):136-138.
doi: 10.1093/bioinformatics/btp612 URL |
[16] |
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28(5):511-515.
doi: 10.1038/nbt.1621 pmid: 20436464 |
[17] |
Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq:accounting for selection bias[J]. Genome Biol, 2010, 11(2):R14.
doi: 10.1186/gb-2010-11-2-r14 URL |
[18] |
Mao X, Cai T, Olyarchuk JG, et al. Automated genome annotation and pathway identification using the KEGG Orthology(KO)as a controlled vocabulary[J]. Bioinformatics, 2005, 21(19):3787-3793.
doi: 10.1093/bioinformatics/bti430 URL |
[19] | Betteridge DJ. What is oxidative stress?[J]. Metab:Clin Exp, 2000, 49(Suppl 1):3-8. |
[20] |
Schwerin M, Kurts-Ebert B, Beyer M, et al. Temporary consumption of diet with unbalanced amino acid pattern affects long-lasting growth retardation correlated with oxidative stress response associated gene expression in juvenile pigs[J]. Clin Nutr, 2008, 27(5):781-789.
doi: 10.1016/j.clnu.2008.06.010 pmid: 18692284 |
[21] |
Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease:oxidative stress in farm animals[J]. Vet J, 2007, 173(3):502-511.
pmid: 16914330 |
[22] |
Benz CC, Yau C. Ageing, oxidative stress and cancer:paradigms in parallax[J]. Nat Rev Cancer, 2008, 8(11):875-879.
doi: 10.1038/nrc2522 URL |
[23] |
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress[J]. Curr Biol, 2014, 24(10):R453-R462.
doi: 10.1016/j.cub.2014.03.034 URL |
[24] | 肖文霞, 马秀菊. 氧化应激与妊娠[J]. 国外医学妇幼保健分册, 2005, 16(3):142-144. |
Xiao WX, Ma XJ. Oxidative stress and pregnancy[J]. Foreign Med Sci Sect Matern Child Heal, 2005, 16(3):142-144. | |
[25] |
Kurata M, Suzuki M, Agar NS. Antioxidant systems and erythrocyte life-span in mammals[J]. Comp Biochem Physiol B, 1993, 106(3):477-487.
doi: 10.1016/0305-0491(93)90121-K URL |
[26] |
Miller JK, Brzezinska-Slebodzinska E, Madsen FC. Oxidative stress, antioxidants, and animal function[J]. J Dairy Sci, 1993, 76(9):2812-2823.
pmid: 8227685 |
[27] |
Wang J, Chen L, Li P, et al. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation[J]. J Nutr, 2008, 138(6):1025-1032.
doi: 10.1093/jn/138.6.1025 URL |
[28] |
Thakare VN, Aswar MK, Kulkarni YP, et al. Silymarin ameliorates experimentally induced depressive like behavior in rats:Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response[J]. Physiol Behav, 2017, 179:401-410.
doi: S0031-9384(16)30738-7 pmid: 28711395 |
[29] | 姚金晶, 陈宜涛. Th1/Th2平衡调节与疾病发生的研究进展[J]. 现代生物医学进展, 2009, 9(13):2597-2600. |
Yao JJ, Chen YT. Advances of regulation Th1/Th2 type cytokines balance in human diseases[J]. Prog Mod Biomed, 2009, 9(13):2597-2600. | |
[30] |
De la Fuente M. Effects of antioxidants on immune system ageing[J]. Eur J Clin Nutr, 2002, 56(Suppl 3):S5-S8.
doi: 10.1038/sj.ejcn.1601476 URL |
[1] | LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum [J]. Biotechnology Bulletin, 2023, 39(9): 156-167. |
[2] | ZHANG Yue-yi, LAN She-yi, PEI Hai-run, FENG Di. Process Optimization of Multi-strain Fermented Oat Bran and Hair Efficacy Evaluation [J]. Biotechnology Bulletin, 2023, 39(9): 58-70. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[5] | HUANG Hai-chen, WU Wen-ya, QI Meng, XUE Fan-zheng, WU Xiao-ping, ZHANG Jun-li, FU Jun-sheng. RNA-Seq Analysis of Cordycepin Against Triple-negative Breast Cancer [J]. Biotechnology Bulletin, 2021, 37(11): 72-80. |
[6] | DAI Wen-shuang, LIU Hui-yun, DU Qing-guo, ZOU Cheng, WANG Ke. Effect of Histone Deacetylase Inhibitor(HDACi)on CRISPR Editing Efficiency of Wheat and Transcriptomics Analysis [J]. Biotechnology Bulletin, 2021, 37(1): 2-14. |
[7] | LI Yi, SUN Chao. Research Progress in Single-Cell RNA-Seq of Plant [J]. Biotechnology Bulletin, 2021, 37(1): 60-66. |
[8] | ZHAI Nan-xin, CHI Hui, XIA Yue-lin, LIU Cai-yue, PEI Xin-wu, YUAN Qian-hua. Transcriptome Analysis of Drought-resistant Genes in Hainan Shanlan Upland Rice [J]. Biotechnology Bulletin, 2020, 36(12): 12-20. |
[9] | JIA Feng-lian, LI Ze, LIANG Ying-bo, LI Guang-yue, YANG Xiu-fen. Verticillium dahliae Elicitor PevD1 Activates MAPKs in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2020, 36(10): 15-24. |
[10] | CUI Kai, WU Wei-wei, DIAO Qi-yu. Application and Research Progress on Transcriptomics [J]. Biotechnology Bulletin, 2019, 35(7): 1-9. |
[11] | BAO Jing-jing, PU Ya-bin, MA Yue-hui, ZHAO Qian-jun. Identification and Analysis of Alternative Splicing in Longissimus dorsi of Sheep at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(7): 33-38. |
[12] | WEI Kang-ning, CUI Jun-xia, WANG Meng-lei, WANG Li, LI Yong-fang. Advances in the Techniques of Studying Translatome [J]. Biotechnology Bulletin, 2019, 35(7): 222-229. |
[13] | XU Jun, WANG Rui, LI Rui, GAO Hai-xia, ZHANG Rui-liang, WANG Wen-jing, ZHAO Xia, LI Lin. RNA-seq Analysis of Drug-resistant Genes Associated with baeSR and acrB Double Gene Deletion Strains of Salmonella typhimurium [J]. Biotechnology Bulletin, 2019, 35(12): 76-84. |
[14] | YU Hai-liang, ZOU Wen-bin, WANG Xiao-hui, LIN Yu-xin, DAI Guo-jun, ZHANG Tao, ZHANG Gen-xi, XIE Kai-zhou, WANG Jin-yu, SHI Hui-qiang. RNA Sequencing Analysis of Cecum Tissues of Jinghai Yellow Chickens Infected by E. tenella [J]. Biotechnology Bulletin, 2019, 35(11): 64-71. |
[15] | TANG Xian, DING Xiang, DONG Ming-ming, ZHU Miao, SONG Zhi-qiang, HOU Yi-ling. Transcriptome Analysis of Clavariadelphus pistillaris Fruiting Bodies at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(10): 119-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||