Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (6): 163-170.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1323
Previous Articles Next Articles
ZHANG Chen(), ZUO Qi-sheng, ZOU Yi-chen, ZHAO Juan-juan, ZHANG Ya-ni, LI Bi-chun()
Received:
2020-10-26
Online:
2021-06-26
Published:
2021-07-08
Contact:
LI Bi-chun
E-mail:m160647@yzu.edu.cn;yubcli@yzu.edu.cn
ZHANG Chen, ZUO Qi-sheng, ZOU Yi-chen, ZHAO Juan-juan, ZHANG Ya-ni, LI Bi-chun. Study on the Function of Glycolysis in Inducing Chicken PGCLC in vitro Formation[J]. Biotechnology Bulletin, 2021, 37(6): 163-170.
引物名称 Primer name | 5' 端引物 Primer sequence(5') | 3' 端引物 Primer sequence(3') |
---|---|---|
Hk1 | CCTCTTGGCTTCACATTC | TTCACAGTTTGGGTCTTCAT |
Pkm2 | GGCACCCACGAGTATCAT | CATTGTCCAGCGTCACTTT |
Pfkp | GCCACAACAAACCTATAA-CA | ATCAAAGGCAGACGAACA |
Ldha | TGGGCATCCATCCTCTGA | CCTGCTTGTGAACCTCCT |
Glut1 | TGTTTGGCTTGGACTTGAT | TCTTGAGGACGCTCTTGG |
Hif1a | TTGACAAGGCATCCATTA | TCCTCAGAAAGCACCATA |
Aldoc | CTGACGACGGCACTCCTTT | GACAGCCCATCCAGACCCT |
Pgk1 | AGGGCTGCATCACCATTA | CCACCTCCAGTGCTAACG |
Table 1 Primers used for qRT-PCR
引物名称 Primer name | 5' 端引物 Primer sequence(5') | 3' 端引物 Primer sequence(3') |
---|---|---|
Hk1 | CCTCTTGGCTTCACATTC | TTCACAGTTTGGGTCTTCAT |
Pkm2 | GGCACCCACGAGTATCAT | CATTGTCCAGCGTCACTTT |
Pfkp | GCCACAACAAACCTATAA-CA | ATCAAAGGCAGACGAACA |
Ldha | TGGGCATCCATCCTCTGA | CCTGCTTGTGAACCTCCT |
Glut1 | TGTTTGGCTTGGACTTGAT | TCTTGAGGACGCTCTTGG |
Hif1a | TTGACAAGGCATCCATTA | TCCTCAGAAAGCACCATA |
Aldoc | CTGACGACGGCACTCCTTT | GACAGCCCATCCAGACCCT |
Pgk1 | AGGGCTGCATCACCATTA | CCACCTCCAGTGCTAACG |
Fig.3 Effect of glycolysis inhibitor/activator on embryoid body formation during the induction in vitro A:Observation of cell morphology. B:The histogram shows the number of embryoid bodies
Fig. 4 Effect of glycolysis inhibitor/activator on PGC-like formation during the induction in vitro A:Proportion of positive cells with flow cytometry. B:Histogram showed the proportion of positive cells
[1] |
Brinster RL, Harstad H . Energy metabolism in primordial germ cells of the mouse[J]. Experimental Cell Research, 1977, 109(1):111-117.
doi: 10.1016/0014-4827(77)90050-7 URL |
[2] |
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 2011, 11:325-337.
doi: 10.1038/nrc3038 URL |
[3] |
Zheng J. Energy metabolism of cancer:Glycolysis versus oxidative phosphorylation(Review)[J]. Oncology Letters, 2012, 4(6):1151-1157.
pmid: 23226794 |
[4] | Hayashi Y, Otsuka K, Ebina M, et al. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells[J]. Proceedings of the National Academy of ences of the United States of America, 2017, 114(31):8289. |
[5] |
Kanatsu-Shinohara M, Tanaka T, Ogonuki N, et al. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal[J]. Genes & Development, 2016, 30(23):2637.
doi: 10.1101/gad.287045.116 URL |
[6] |
Folmes CL, Nelson T, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming[J]. Cell Metabolism, 2011, 14(2):264-271.
doi: 10.1016/j.cmet.2011.06.011 URL |
[7] | 冯科珂, 刘晶锦, 姚其正. VK3及其类似物的抗肿瘤作用[J]. 国外医药:抗生素分册, 2009, 30(4):171-177. |
Feng KK, Liu JJ, Yao QZ. The antineoplastic effect of vitamin K3 and its derivates [J]. World Notes on Antibiotics, 2009, 30(4):171-177. | |
[8] |
Chen J, Jiang Z, Wang B, et al. Vitamin K3 and K5 are inhibitors of tumor pyruvate kinase M2[J]. Cancer Letter, 2012, 316(2):204-10.
doi: 10.1016/j.canlet.2011.10.039 URL |
[9] | Wu FY, Liao WC, Chang HM. Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two(MTT and SRB)cell viability assays[J]. Life Science, 1993, 52(22):1797-804. |
[10] | Hitomi M, Yokoyama F, Kita Y, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo[J]. International Journal of Oncology, 2005, 26(3):713-720. |
[11] |
Giannoni E, Taddei ML, Morandi A, et al. Targeting stromal-induced pyruvate kinase M2 nuclear translocation impairs oxphos and prostate cancer metastatic spread[J]. Oncotarget, 2015, 6(27):24061-24074.
pmid: 26183399 |
[12] |
Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metabolism, 2015, 21(1):65-80.
doi: 10.1016/j.cmet.2014.12.005 URL |
[13] | 施青青, 张振韬, 李鹏程, 等. BMP4诱导鸡胚胎干细胞向雄性生殖细胞分化的研究[J]. 畜牧兽医学报, 2013, 44(11):1749-1757. |
Shi QQ, Zhang ZT, Li PC, et al. Study on differentiation of chicken embryonic stem cells to male germ cells by BMP4[J]. Chinese Journal of Animal and Veterinary Sciences, 2013, 44(11), 1749-1757. | |
[14] | 于丹, 王莹, 高原, 等. Akt/GSK-3β/Snail通路在TGF-β_1诱导A549/DDP细胞上皮间质转化中的作用[J]. 中国病理生理杂志, 2018(6):1124-1128. |
Yu D, Wang Y, Gao Y, et al. Effect of Akt/GSK-3β/Snail signaling pathway on EMT in A549/DDP cells mediated by TGF-β1[J]. Chinese Journal of Pathophysiology, 2018(6):1124-1128. | |
[15] | 杨海燕, 孙敏, 田智泉, 等. 鸡X期胚盘细胞分散培养与整胚培养比较初探[J]. 中国家禽, 2010, 32(7):14-17. |
Yang HQ, Sui M, Tian ZQ, et al. Preliminary comparison of dispersed culture and whole embryo culture of chicken blastodermal cells on X period[J]. China Poultry, 2010, 32(7):14-17. | |
[16] | 靳锴, 汪怡临, 左其生, 等. 睾丸注射Mx-NA双基因制备抗病转基因鸡的研究[J]. 中国家禽, 2014, 36(14):8-12. |
Jin K, Wang YL, Zuo QS, et al. Generation of disease-resistant transgenic chicken by testis-mediated injection method of combined Mx-NA gene[J]. China Poultry, 2014. 36(14):8-12. | |
[17] |
Yeung SJ, Pan J, Lee MH. Roles of p53, MYC, and HIF-1 in regulating glycolysis:the seventh hallmark of cancer[J]. Cellular and Molecular Life Sciences, 2008, 65:3981-3999.
doi: 10.1007/s00018-008-8224-x pmid: 18766298 |
[18] |
Hsu PP, Sabatini DM. Cancer cell metabolism:Warburg and beyond[J]. Cell, 2008, 134:703-707.
doi: 10.1016/j.cell.2008.08.021 URL |
[19] | Graziano F, Ruzzo A, Giacomini E, Ricciardi T, et al. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer[J]. Pharmacogenomics, 2017, 17(3):258-264. |
[20] |
Kakinuma Y, Miyauchi T, Suzuki T, et al. Enhancement of glycolysis in cardiomyocytes elevates endothelin-1 expression through the transcriptional factor hypoxia-inducible factor-1 alpha[J]. Clinical Science, 2002, 103(Suppl 48):210S-214S.
doi: 10.1042/CS103S210S URL |
[21] |
Zhou W, Choi M, Margineantu D, et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition[J]. EMBO Journal, 2014, 31(9):2103-2116.
doi: 10.1038/emboj.2012.71 URL |
[22] |
Taper HS, de Gerlache J, Lans M, et al. Non-toxic potentiation of cancer chemotherapy by combined C and K3 vitamin pre-treatment[J]. International Journal of Cancer, 1987, 40:575-579.
pmid: 3666992 |
[23] | Taper HS, Keyeux A, Roberfroid M. Potentiation of radiotherapy by nontoxic pretreatment with combined vitamins C and K3 in mice bearing solid transplantable tumor[J]. Anticancer Research, 1996, 16:499-503. |
[24] | Taper HS, Jamison JM, Gilloteaux J, et al. Inhibition of the development of metastases by dietary vitamin C:K3 combination[J]. Life Science, 2004, 75:955-967. |
[25] | De Loecker W, Janssens J, Bonte J, et al. Effects of sodium ascorbate(vitamin C)and 2-methyl-1, 4-naphtho-quinone(vitamin K3)treatment on human tumor cell growth in vitro, II:synergism with combined chemotherapy action[J]. Anticancer Research, 1993, 13:103-106. |
[26] |
Sakagami H, Satoh K, Hakeda Y, et al. Apopto-sis-inducing activity of vitamin C and vitamin K[J]. Cellular and Molecular Biology, 2000, 46:129-143.
pmid: 10726979 |
[27] |
Jamison JM, Gilloteaux J, Taper HS, et al. Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer[J]. Journal of Nutrition, 2001, 131:158S-160S.
doi: 10.1093/jn/131.1.158S URL |
[28] |
Buc Calderon P, Cadrobbi J, Marques C, et al. Potential therapeutic application of the association of vitamins C and K3 in cancer treatment[J]. Current Medicinal Chemistry, 2002, 9:2271-2285.
doi: 10.2174/0929867023368674 URL |
[29] |
Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice[J]. Biochem Pharmacol, 2006, 72:671-680.
doi: 10.1016/j.bcp.2006.05.025 URL |
[30] |
Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(-ADP-ribose)polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemia cells[J]. International Journal of Cancer, 2007, 120:1192-1197.
doi: 10.1002/(ISSN)1097-0215 URL |
[31] |
Kim YH, Heo JS, Han HJ. High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways[J]. Journal of Cellular Physiology, 2006, 209:94-102.
doi: 10.1002/(ISSN)1097-4652 URL |
[32] | Crespo FL, Sobrado VR, Gomez L, et al. Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose[J]. Stem Cells, 2010, 28:1132-1142. |
[33] |
Khoo MLM, McQuade LR, Smith MSR, et al. Growth and differentiation of embryoid bodies derived from human embryonic stem cells:Effect of glucose and basic fibroblast growth factor[J]. Biology of Reproduction, 2005, 73:1147-1156.
doi: 10.1095/biolreprod.104.036673 URL |
[34] |
Chae HD, Lee MR, Broxmeyer HE. 5-Aminoimidazole-4-carboxyamide ribonucleoside induces G1/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation[J]. Stem Cells, 2012, 30(2):140-149.
doi: 10.1002/stem.778 URL |
[35] | Hayashi Y, Otsuka K, Ebina M, et al. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells[J]. Proceedings of the National Academy of ences of the United States of America, 2017, 114(31):8289. |
[1] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[2] | CHEN Chu-wen, LI Jie, ZHAO Rui-peng, LIU Yuan, WU Jin-bo, LI Zhi-xiong. Cloning, Tissue Expression Profile and Function Prediction of GPX3 Gene in Tibetan Chicken [J]. Biotechnology Bulletin, 2023, 39(3): 311-320. |
[3] | DU Zhen-wei, ZHU Shuai-peng, MA Xiang-fei, LI Dong-hua, SUN Gui-rong. Cloning,Expression and Bioinformatics Analysis of the CDS Region of Chicken CEBPA Gene [J]. Biotechnology Bulletin, 2021, 37(8): 203-212. |
[4] | YIN Jun-lei, ZHANG Yan-fang, ZOU Fan-yu, PAN Peng-tao, DUAN Yan-hong, QIU Shu-xing. Construction and Immunoprotection of sptP Deletion Mutant of Salmonella Pullorum [J]. Biotechnology Bulletin, 2021, 37(2): 122-128. |
[5] | WANG Jing, DAI Dong, WU Shu-geng, ZHANG Hai-jun, QI Guang-hai. Advances in Successional Development and Early Establishment of the Chicken Intestinal Microbiota [J]. Biotechnology Bulletin, 2020, 36(2): 1-8. |
[6] | YU Hai-liang, ZOU Wen-bin, WANG Xiao-hui, LIN Yu-xin, DAI Guo-jun, ZHANG Tao, ZHANG Gen-xi, XIE Kai-zhou, WANG Jin-yu, SHI Hui-qiang. RNA Sequencing Analysis of Cecum Tissues of Jinghai Yellow Chickens Infected by E. tenella [J]. Biotechnology Bulletin, 2019, 35(11): 64-71. |
[7] | ZHANG Ya-nan, LIN Ya-qiu, XU Qing, XU Ya-ou, HE Qing-hua. Correlation Analysis Between IRX3 Gene Expression and Intramuscular Fat Deposition in Tibetan Chicken [J]. Biotechnology Bulletin, 2018, 34(9): 219-223. |
[8] | LIU Si-jia, TIAN Fei, ZHANG Cun-fang, QIAO Zhi-gang, ZHAO Kai. Transcriptome Sequencing and Analysis of Hepatopancreas from Carps Under Cold Stress [J]. Biotechnology Bulletin, 2018, 34(11): 168-178. |
[9] | LI Dong-hua, WANG Xin-lei ,LI Zhuan-jian ,SUN Gui-rong ,KANG Xiang-tao, YAN Feng-bin. Research Advances on Whole Genome Sequencing of Chicken [J]. Biotechnology Bulletin, 2017, 33(7): 35-39. |
[10] | Zhang Chao, Ge Jun, Yuan Mingjing, Ye Jun, Yuan Li. Identification and Construction of RCAS RNA Interference Vector for Chicken Vezf1 [J]. Biotechnology Bulletin, 2015, 31(8): 102-107. |
[11] | Xu Kun, Wang Ziying. Research Advances on Tumor Cell Metabolism Regulated by PKM2 [J]. Biotechnology Bulletin, 2015, 31(6): 48-54. |
[12] | Xue Binghua, Liu Zhonghua. Porcine Pluripotent Stem Cells:Facts, Challenges and Hopes [J]. Biotechnology Bulletin, 2015, 31(4): 82-91. |
[13] | Li Jianing,Liu Pengxia. Progress in Livestock Induced Pluripotent Stem Cells [J]. Biotechnology Bulletin, 2014, 0(9): 28-33. |
[14] | Jiang Zhengjun,Liu Shuhai,Wang Maochao,Cheng Quanming,Huang Jin. The Improvement of Chicken Alpha Interferon Expression by a Recombinant Pichia pastoris with Cultural Condition Optimization [J]. Biotechnology Bulletin, 2014, 0(6): 115-119. |
[15] | Peng Te, Wang Bingyun, Li Dongsheng, Chen Zhisheng, Chen Shengfeng, Ji Huiqin, Chen Jinding. Construction and Screening of Recombinant Interference Vector of Pluripotency Associated Genes cNanog and cPouV in Chicken Embryonic Stem Cells [J]. Biotechnology Bulletin, 2014, 0(5): 117-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||