Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 235-242.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0247
Previous Articles Next Articles
WANG Peng-fei(), YANG Min, ZHU Long-jiao, XU Wen-tao()
Received:
2021-03-03
Online:
2021-12-26
Published:
2022-01-19
Contact:
XU Wen-tao
E-mail:wpf6177@163.com;xuwentao@cau.edu.cn
WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters[J]. Biotechnology Bulletin, 2021, 37(12): 235-242.
配体 Ligand | 发射波长 Emission wavelength/nm | 颜色 Colour | 量子产率 Quantum yield/% | 参考文献 Reference |
---|---|---|---|---|
BSA | 350-500 | 蓝色 | / | [11] |
N,N-二甲基甲酰胺(DMF) | 484、544 | 青色、绿色 | / | [32] |
PAMAM(G4-OH) | 470、520 | 蓝色、绿色 | 18、28 | [33-34] |
聚乙烯亚胺(PEI) | 465、530、560 | 蓝色、绿色、黄色 | 4、11、7 | [31] |
谷胱甘肽(GSH) | 570 | 黄色 | 17 | [35] |
硫辛酸(LA) | 680 | 红色 | 47 | [36] |
血红蛋白(HGB) | 450、760 | 蓝色、红色 | / | [37] |
Table 1 Influence of different ligands on fluorescent Pt NCs
配体 Ligand | 发射波长 Emission wavelength/nm | 颜色 Colour | 量子产率 Quantum yield/% | 参考文献 Reference |
---|---|---|---|---|
BSA | 350-500 | 蓝色 | / | [11] |
N,N-二甲基甲酰胺(DMF) | 484、544 | 青色、绿色 | / | [32] |
PAMAM(G4-OH) | 470、520 | 蓝色、绿色 | 18、28 | [33-34] |
聚乙烯亚胺(PEI) | 465、530、560 | 蓝色、绿色、黄色 | 4、11、7 | [31] |
谷胱甘肽(GSH) | 570 | 黄色 | 17 | [35] |
硫辛酸(LA) | 680 | 红色 | 47 | [36] |
血红蛋白(HGB) | 450、760 | 蓝色、红色 | / | [37] |
[1] |
Chen Y, Yang T, Pan H, et al. Photoemission mechanism of water-soluble silver nanoclusters:ligand-to-metal-metal charge transfer vs strong coupling between surface plasmon and emitters[J]. J Am Chem Soc, 2014, 136(5):1686-1689.
doi: 10.1021/ja407911b URL |
[2] |
Yu HZ, Rao B, Jiang W, et al. The photoluminescent metal nanoclusters with atomic precision[J]. Coord Chem Rev, 2019, 378:595-617.
doi: 10.1016/j.ccr.2017.12.005 URL |
[3] |
Qiao Z, Zhang J, Hai X, et al. Recent advances in templated synjournal of metal nanoclusters and their applications in biosensing, bioimaging and theranostics[J]. Biosens Bioelectron, 2021, 176:112898.
doi: 10.1016/j.bios.2020.112898 URL |
[4] | Huang X, Li ZB, Yu ZG, et al. Recent advances in the synjournal, properties, and biological applications of platinum nanoclusters[J]. J Nanomater, 2019, 2019:1-31. |
[5] |
Cho SW, Kim HJ, Cho YN, et al. Top-down synjournal of polyaspartamide morphogens to derive platinum nanoclusters[J]. Mater Lett, 2016, 168:184-187.
doi: 10.1016/j.matlet.2016.01.055 URL |
[6] |
Nagaya J, Homma M, Tanioka A, et al. Relationship between protonation and ion condensation for branched poly(ethylenimine)[J]. Biophys Chem, 1996, 60(1/2):45-51.
doi: 10.1016/0301-4622(95)00143-3 URL |
[7] |
Shang L, Dong SJ, Nienhaus GU. Ultra-small fluorescent metal nanoclusters:Synjournal and biological applications[J]. Nano Today, 2011, 6(4):401-418.
doi: 10.1016/j.nantod.2011.06.004 URL |
[8] |
Yamamoto K, Imaoka T, Chun WJ, et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions[J]. Nat Chem, 2009, 1(5):397-402.
doi: 10.1038/nchem.288 URL |
[9] |
Borodko Y, Ercius P, Pushkarev V, et al. From single Pt atoms to Pt nanocrystals:photoreduction of Pt2+ inside of a PAMAM dendrimer[J]. J Phys Chem Lett, 2012, 3(2):236-241.
doi: 10.1021/jz201599u URL |
[10] |
Zhao MQ, Sun L, Crooks RM. Preparation of Cu nanoclusters within dendrimer templates[J]. J Am Chem Soc, 1998, 120(19):4877-4878.
doi: 10.1021/ja980438n URL |
[11] |
Xia XD, Zhang Y, Wang JX. Novel fabrication of highly fluorescent Pt nanoclusters and their applications in hypochlorite assay[J]. RSC Adv, 2014, 4(48):25365-25368.
doi: 10.1039/C4RA03917C URL |
[12] |
Yu CJ, Chen TH, Jiang JY, et al. Lysozyme-directed synjournal of platinum nanoclusters as a mimic oxidase[J]. Nanoscale, 2014, 6(16):9618-9624.
doi: 10.1039/C3NR06896J URL |
[13] |
Yuan X, Luo Z, Zhang Q, et al. Synjournal of highly fluorescent metal(Ag, Au, Pt, and Cu)nanoclusters by electrostatically induced reversible phase transfer[J]. ACS Nano, 2011, 5(11):8800-8808.
doi: 10.1021/nn202860s pmid: 22010797 |
[14] |
Chen Z, Liu C, Cao F, et al. DNA metallization:principles, methods, structures, and applications[J]. Chem Soc Rev, 2018, 47(11):4017-4072.
doi: 10.1039/C8CS00011E URL |
[15] |
Higuchi A, Siao YD, Yang ST, et al. Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies[J]. Anal Chem, 2008, 80(17):6580-6586.
doi: 10.1021/ac8006957 pmid: 18665606 |
[16] |
Zheng C, Zheng AX, Liu B, et al. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin[J]. Chem Commun, 2014, 50(86):13103-13106.
doi: 10.1039/C4CC05339G URL |
[17] |
Kermani HA, Hosseini M, Miti A, et al. A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters[J]. Anal Bioanal Chem, 2018, 410(20):4943-4952.
doi: 10.1007/s00216-018-1143-2 URL |
[18] |
Feng L, Huang Z, Ren J, et al. Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds[J]. Nucleic Acids Res, 2012, 40(16):e122.
doi: 10.1093/nar/gks387 URL |
[19] |
Wu F, Lin Q, Wang LL, et al. A DNA electrochemical biosensor based on triplex DNA-templated Ag/Pt nanoclusters for the detection of single-nucleotide variant[J]. Talanta, 2020, 207:120257.
doi: 10.1016/j.talanta.2019.120257 URL |
[20] |
Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles:particle size effect on oxygen reduction reaction activity[J]. Nano Lett, 2011, 11(9):3714-3719.
doi: 10.1021/nl2017459 URL |
[21] |
Imaoka T, Kitazawa H, Chun WJ, et al. Finding the most catalytically active platinum clusters with low atomicity[J]. Angew Chem Int Ed Engl, 2015, 54(34):9810-9815.
doi: 10.1002/anie.v54.34 URL |
[22] |
Vajda S, Pellin MJ, Greeley JP, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane[J]. Nat Mater, 2009, 8(3):213-216.
doi: 10.1038/nmat2384 URL |
[23] |
Imaoka T, Kitazawa H, Chun WJ, et al. Magic number Pt13 and misshapen Pt12 clusters:which one is the better catalyst?[J]. J Am Chem Soc, 2013, 135(35):13089-13095.
doi: 10.1021/ja405922m URL |
[24] |
Rahmi E, Umar AA, Abd Rahman MY, et al. Fibrous AuPt bimetallic nanocatalyst with enhanced catalytic performance[J]. RSC Adv, 2016, 6(33):27696-27705.
doi: 10.1039/C5RA27849J URL |
[25] |
Penza M, Rossi R, Alvisi M, et al. Pt-modified carbon nanotube networked layers for enhanced gas microsensors[J]. Thin Solid Films, 2011, 520(3):959-965.
doi: 10.1016/j.tsf.2011.04.178 URL |
[26] |
Ji K, Chang G, Oyama M, et al. Efficient and clean synjournal of graphene supported platinum nanoclusters and its application in direct methanol fuel cell[J]. Electrochimica Acta, 2012, 85:84-89.
doi: 10.1016/j.electacta.2012.08.086 URL |
[27] |
Zhou XW, Gan YL, Du JJ, et al. A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells[J]. J Power Sources, 2013, 232:310-322.
doi: 10.1016/j.jpowsour.2013.01.062 URL |
[28] | Ercolano G, Cavaliere S, Rozière J, et al. Recent developments in electrocatalyst design thrifting noble metals in fuel cells[J]. Curr Opin Electrochem, 2018, 9:271-277. |
[29] | Halawa MI, Lai J, Xu G. Gold nanoclusters:synthetic strategies and recent advances in fluorescent sensing[J]. Mater Today Nano, 2018, 3:9-27. |
[30] |
Huang X, Ishitobi H, Inouye Y. Formation of fluorescent platinum nanoclusters using hyper-branched polyethylenimine and their conjugation to antibodies for bio-imaging[J]. RSC Adv, 2016, 6(12):9709-9716.
doi: 10.1039/C5RA24522B URL |
[31] |
Huang X, Aoki K, Ishitobi H, et al. Preparation of Pt nanoclusters with different emission wavelengths and their application in Co2+ detection[J]. Chemphyschem, 2014, 15(4):642-646.
doi: 10.1002/cphc.201301115 pmid: 24520071 |
[32] |
Kawasaki H, Yamamoto H, Fujimori H, et al. Surfactant-free solution synjournal of fluorescent platinum subnanoclusters[J]. Chem Commun:Camb, 2010, 46(21):3759-3761.
doi: 10.1039/b925117k URL |
[33] |
Tanaka S, Miyazaki J, Tiwari DK, et al. Fluorescent platinum nanoclusters:synjournal, purification, characterization, and application to bioimaging[J]. Angew Chem Int Ed Engl, 2011, 50(2):431-435.
doi: 10.1002/anie.201004907 URL |
[34] | Tanaka SI, Aoki K, Muratsugu A, et al. Synjournal of green-emitting Pt8 nanoclusters for biomedical imaging by pre-equilibrated Pt/PAMAM(G4-OH)and mild reduction[J]. Opt Mater Express, OME, 2013, 3(2):157-165. |
[35] |
Le Guével X, Trouillet V, Spies C, et al. Synjournal of yellow-emitting platinum nanoclusters by ligand etching[J]. J Phys Chem C, 2012, 116(10):6047-6051.
doi: 10.1021/jp211672t URL |
[36] |
García Fernández J, Trapiella-Alfonso L, Costa-Fernández JM, et al. Aqueous synjournal of near-infrared highly fluorescent platinum nanoclusters[J]. Nanotechnology, 2015, 26(21):215601.
doi: 10.1088/0957-4484/26/21/215601 pmid: 25944823 |
[37] |
Molaabasi F, Sarparast M, Shamsipur M, et al. Shape-controlled synjournal of luminescent hemoglobin capped hollow porous platinum nanoclusters and their application to catalytic oxygen reduction and cancer imaging[J]. Sci Rep, 2018, 8(1):14507.
doi: 10.1038/s41598-018-32918-w pmid: 30267025 |
[38] |
Liu X, Bauer M, Bertagnolli H, et al. Structure and magnetization of small monodisperse platinum clusters[J]. Phys Rev Lett, 2006, 97(25):253401.
doi: 10.1103/PhysRevLett.97.253401 URL |
[39] |
Baidyshev VS, Gafner YY, Gafner SL, et al. Thermal stability of Pt nanoclusters interacting to carbon sublattice[J]. Phys Solid State, 2017, 59(12):2512-2518.
doi: 10.1134/S1063783417120071 URL |
[40] |
Ahmadi S, Zhang X, Gong YY, et al. Atomic under-coordination fascinated catalytic and magnetic behavior of Pt and Rh nanoclusters[J]. Phys Chem Chem Phys, 2014, 16(38):20537-20547.
doi: 10.1039/C4CP02499K URL |
[41] |
Lee SH, Han SS, Kang JK, et al. Phase stability of Pt nanoclusters and the effect of a( 0 0 1)graphite surface through molecular dynamics simulation[J]. Surf Sci, 2008, 602(7):1433-1439.
doi: 10.1016/j.susc.2008.02.004 URL |
[42] |
Feng J, Huang P, Wu FY. Gold-platinum bimetallic nanoclusters with enhanced peroxidase-like activity and their integrated agarose hydrogel-based sensing platform for the colorimetric analysis of glucose levels in serum[J]. Analyst, 2017, 142(21):4106-4115.
doi: 10.1039/C7AN01343D URL |
[43] |
Zheng L, Cai G, Qi W, et al. Optical biosensor for rapid detection of Salmonella typhimurium based on porous Gold@Platinum nanocatalysts and a 3D fluidic chip[J]. ACS Sens, 2020, 5(1):65-72.
doi: 10.1021/acssensors.9b01472 URL |
[44] |
Fu XM, Liu ZJ, Cai SX, et al. Electrochemical aptasensor for the detection of vascular endothelial growth factor(VEGF)based on DNA-templated Ag/Pt bimetallic nanoclusters[J]. Chin Chem Lett, 2016, 27(6):920-926.
doi: 10.1016/j.cclet.2016.04.014 URL |
[45] |
Wu LL, Wang LY, Xie ZJ, et al. Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA-Ag/Pt nanoclusters[J]. RSC Adv, 2016, 6(79):75384-75389.
doi: 10.1039/C6RA12597B URL |
[46] |
Pajooheshpour N, Rezaei M, Hajian A, et al. Protein templated Au-Pt nanoclusters-graphene nanoribbons as a high performance sensing layer for the electrochemical determination of diazinon[J]. Sensor Actuat B:Chem, 2018, 275:180-189.
doi: 10.1016/j.snb.2018.08.014 URL |
[47] |
Li L, Liu X, Yang L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosens Bioelectron, 2019, 142:111525.
doi: 10.1016/j.bios.2019.111525 URL |
[48] |
Lu L. Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid[J]. Sensor Actuat B:Chem, 2019, 281:182-190.
doi: 10.1016/j.snb.2018.10.074 URL |
[49] |
George A, Gopalakrishnan H, Mandal S. Surfactant free platinum nanocluster as fluorescent probe for the selective detection of Fe(III)ions in aqueous medium[J]. Sensor Actuat B:Chem, 2017, 243:332-337.
doi: 10.1016/j.snb.2016.11.138 URL |
[50] |
Xu N, Li HW, Yue Y, et al. Synjournal of bovine serum albumin-protected high fluorescence Pt16-nanoclusters and their application to detect sulfide ions in solutions[J]. Nanotechnology, 2016, 27(42):425602.
doi: 10.1088/0957-4484/27/42/425602 pmid: 27631174 |
[51] |
Lores-Padín A, Cruz-Alonso M, González-Iglesias H, et al. Bimodal determination of immunoglobulin E by fluorometry and ICP-MS by using platinum nanoclusters as a label in an immunoassay[J]. Microchimica Acta, 2019, 186(11):1-10.
doi: 10.1007/s00604-018-3127-5 URL |
[52] |
Xin Y, Huang X, Li Z, et al. Versatile Pt NCs-based chemotherapeutic agents significantly induce the apoptosis of cisplatin-resistant non-small cell lung cancer[J]. Biochem Biophys Res Commun, 2019, 512(2):218-223.
doi: 10.1016/j.bbrc.2019.03.060 URL |
[1] | LIU Hao, MA Shi-jie, ZHOU Zhe-min, CUI Wen-jing. Improving the Activity of L-aspartate-a-decarboxylase from Corynebacterium jeikeium Through Semi-rational Design and Whole-cell Catalytic Synthesis of β-alanine [J]. Biotechnology Bulletin, 2023, 39(9): 281-290. |
[2] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[3] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[4] | QU Ge, SUN Zhou-tong. Catalytic Promiscuity-driven Redesign of Enzyme Functions [J]. Biotechnology Bulletin, 2023, 39(4): 1-9. |
[5] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[6] | CAI Meng-xian, GAO Zuo-min, HU Li-juan, FENG Qun, WANG Hong-cheng, ZHU Bin. Development and Genetic Analysis of Two Nullisomic Lines(NC1 and NC2)in Natural Brassica napus [J]. Biotechnology Bulletin, 2023, 39(3): 81-88. |
[7] | LIU Jin-sheng, CHEN Zhen-ya, HUO Yi-xin, GUO Shu-yuan. Application of FACS Technology in the Directed Evolution of Enzyme [J]. Biotechnology Bulletin, 2023, 39(10): 93-106. |
[8] | HU Hai-yang, YING Wan-qin, HE Jun, LV Zhi-xian, XIE Xiao-ping, DENG Zhong-liang. Establishment and Application of ERA Real-time Fluorescence Method for Rapid Detection of Mycoplasma pneumoniae [J]. Biotechnology Bulletin, 2022, 38(9): 264-270. |
[9] | SUO Qing-qing, WU Nan, YANG Hui, LI Li, WANG Xi-feng. Prokaryotic Expression,Antibody Preparation and Application of Rice Caffeoyl Coenzyme A-O-methyltransferase Gene [J]. Biotechnology Bulletin, 2022, 38(8): 135-141. |
[10] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[11] | WU Kun-kun, XU Xing, JI Ce, REN Jian-feng, LI Wei-ming, ZHANG Qing-hua. Eukaryotic Expression Vector Construction of Danio rerio notch3 Gene and Its Expression Analysis [J]. Biotechnology Bulletin, 2022, 38(1): 179-186. |
[12] | ZHANG Yuan, ZHANG Xue-ping, ZHANG Yue-qian, LI Xiao-juan. Advances of Single-molecule Fluorescence Detection Techniques and Applications in Plant Biology [J]. Biotechnology Bulletin, 2022, 38(1): 33-43. |
[13] | LV Di, CHEN Ru-mei, ZHOU Xiao-jin. Interactions Between ZmJAZ and ZmMYC2 Using Bimolecular Fluorescence Complementation Assay [J]. Biotechnology Bulletin, 2022, 38(1): 77-85. |
[14] | LIU Na, LIU Shi-ke, WANG Qian-nan. Construction of a Strain with Fluorescence Labeling of Cytoskeleton in Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2021, 37(8): 284-293. |
[15] | XU Zi-han, LIU Qian, MIAO Da-peng, CHEN Yue, HU Feng-rong. Impacts of Cymbidium goeringii’s miR396 Overexpression on the Leaf Growth,Photosynthesis and Chlorophyll Fluorescence in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2021, 37(5): 28-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||