Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 243-251.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0329
Previous Articles Next Articles
ZHENG Shu-juan1(), TONG Tao1,2, XU Wen-tao1,2,3, HUANG Kun-lun1,2,3()
Received:
2021-03-15
Online:
2021-12-26
Published:
2022-01-19
Contact:
HUANG Kun-lun
E-mail:zhengshujuan1015@163.com;HKL009@163.com
ZHENG Shu-juan, TONG Tao, XU Wen-tao, HUANG Kun-lun. Research Progress of Biosensing Mediated by the Thiol-ene Click Reaction[J]. Biotechnology Bulletin, 2021, 37(12): 243-251.
功能基团 Functional group | Rp ∝[SH]x[C=C]y | ||
---|---|---|---|
x | y | Rp max | |
丙烯酸酯Acrylate | 0.4 | 0.6 | 2.1 |
烯丙基醚 Allylether | 1 | 0 | 1.0 |
乙烯基醚 Vinylether | 0.5 | 0.5 | 4.8 |
降冰片烯 Norbornene | 0.5 | 0.5 | 6.0 |
乙烯基硅氮烷Vinylsilazane | 0 | 1 | 3.3 |
Table 1 Maximum rates of different olefins in thiol-ene click reactions with tetrathiola
功能基团 Functional group | Rp ∝[SH]x[C=C]y | ||
---|---|---|---|
x | y | Rp max | |
丙烯酸酯Acrylate | 0.4 | 0.6 | 2.1 |
烯丙基醚 Allylether | 1 | 0 | 1.0 |
乙烯基醚 Vinylether | 0.5 | 0.5 | 4.8 |
降冰片烯 Norbornene | 0.5 | 0.5 | 6.0 |
乙烯基硅氮烷Vinylsilazane | 0 | 1 | 3.3 |
[1] |
Kolb HC, Finn MG, Sharpless KB. Click chemistry:diverse chemical function from a few good reactions[J]. Angew Chem Int Ed Engl, 2001, 40(11):2004-2021.
doi: 10.1002/(ISSN)1521-3773 URL |
[2] |
Nwe K, Brechbiel MW. Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research[J]. Cancer Biother Radiopharm, 2009, 24(3):289-302.
doi: 10.1089/cbr.2008.0626 URL |
[3] |
Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synjournal[J]. Polym Chem, 2010, 1(1):17-36.
doi: 10.1039/B9PY00216B URL |
[4] |
Sumerlin BS, Vogt AP. Macromolecular engineering through click chemistry and other efficient transformations[J]. Macromolecules, 2010, 43(1):1-13.
doi: 10.1021/ma901447e URL |
[5] |
Cramer NB, Reddy SK, O’Brien AK, et al. Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries[J]. Macromolecules, 2003, 36(21):7964-7969.
doi: 10.1021/ma034667s URL |
[6] |
Guo JS, Huang YB, Jing XB, et al. Synjournal and characterization of functional poly(γ-benzyl-l-glutamate)(PBLG)as a hydrophobic precursor[J]. Polymer, 2009, 50(13):2847-2855.
doi: 10.1016/j.polymer.2009.04.016 URL |
[7] |
Escorihuela J, Bañuls MJ, Grijalvo S, et al. Direct covalent attachment of DNA microarrays by rapid thiol-ene “click” chemistry[J]. Bioconjug Chem, 2014, 25(3):618-627.
doi: 10.1021/bc500033d URL |
[8] | Escorihuela J, Bañuls MJ, Puchades R, et al. DNA microarrays on silicon surfaces through thiol-ene chemistry[J]. Chem Commun Camb Engl, 2012, 48(15):2116-2118. |
[9] |
Bañuls MJ, Jiménez-Meneses P, Meyer A, et al. Improved performance of DNA microarray multiplex hybridization using probes anchored at several points by thiol-ene or thiol-yne coupling chemistry[J]. Bioconjug Chem, 2017, 28(2):496-506.
doi: 10.1021/acs.bioconjchem.6b00624 URL |
[10] | Chu Q, Liu Y, Jiang S, et al. A novel adsorbent based on aptamer prepared via “thiol-ene” click for specific recognition of phthalic acid esters[J]. Anal Chim Acta, 2021, 1146:109-117. |
[11] |
Madaan N, Terry A, Harb J, et al. Thiol-ene-thiol photofunctionalization of thiolated monolayers with polybutadiene and functional thiols, including thiolated DNA[J]. J Phys Chem C, 2011, 115(46):22931-22938.
doi: 10.1021/jp206134g URL |
[12] |
Wang Z, Zhao JC, Lian HZ, et al. Aptamer-based organic-silica hybrid affinity monolith prepared via “thiol-ene” click reaction for extraction of thrombin[J]. Talanta, 2015, 138:52-58.
doi: 10.1016/j.talanta.2015.02.009 URL |
[13] |
Jonkheijm P, Weinrich D, Köhn M, et al. Photochemical surface patterning by the thiol-ene reaction[J]. Angew Chem, 2008, 120(23):4493-4496.
doi: 10.1002/(ISSN)1521-3757 URL |
[14] |
Wittrock S, Becker T, Kunz H. Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin[J]. Angew Chem Int Ed, 2007, 46(27):5226-5230.
doi: 10.1002/(ISSN)1521-3773 URL |
[15] | Heidecke CD, Lindhorst TK. Iterative synjournal of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties[J]. Chemistry, 2007, 13(32):9056-9067. |
[16] |
Ortiz RA, Garcia Valdéz AE, Martinez Aguilar MG, et al. An effective method to prepare sucrose polymers by Thiol-Ene photopolymerization[J]. Carbohydr Polym, 2009, 78(2):282-286.
doi: 10.1016/j.carbpol.2009.03.045 URL |
[17] |
Wang YQ, Huang D, Wang X, et al. Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery[J]. Biomater Sci, 2019, 7(8):3238-3248.
doi: 10.1039/C9BM00606K URL |
[18] |
Norberg O, Lee IH, Aastrup T, et al. Photogenerated lectin sensors produced by thiol-ene/yne photo-click chemistry in aqueous solution[J]. Biosens Bioelectron, 2012, 34(1):51-56.
doi: 10.1016/j.bios.2012.01.001 pmid: 22341757 |
[19] | Chen G, Amajjahe S, Stenzel MH. Synjournal of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier[J]. Chem Commun:Camb, 2009(10):1198-1200. |
[20] |
Fiore M, Marra A, Dondoni A. Photoinduced thiol-ene coupling as a click ligation tool for thiodisaccharide synjournal[J]. J Org Chem, 2009, 74(11):4422-4425.
doi: 10.1021/jo900514w URL |
[21] |
Yan Y, Fu J, Wang T, et al. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles[J]. Acta Biomater, 2017, 51:471-478.
doi: 10.1016/j.actbio.2017.01.062 URL |
[22] |
Ding H, Li B, Jiang Y, et al. pH-responsive UV crosslinkable chitosan hydrogel via “thiol-ene” click chemistry for active modulating opposite drug release behaviors[J]. Carbohydr Polym, 2021, 251:117101.
doi: 10.1016/j.carbpol.2020.117101 URL |
[23] |
Su X, Kuang L, Battle C, et al. Mild two-step method to construct DNA-conjugated silicon nanoparticles:scaffolds for the detection of microRNA-21[J]. Bioconjug Chem, 2014, 25(10):1739-1743.
doi: 10.1021/bc5004026 URL |
[24] |
González-Lucas D, Bañuls MJ, García-Rupérez J, et al. Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding[J]. Microchimica Acta, 2017, 184(9):3231-3238.
doi: 10.1007/s00604-017-2310-4 URL |
[25] |
Guo WJ, Vilaplana L, Hansson J, et al. Immunoassays on thiol-ene synthetic paper generate a superior fluorescence signal[J]. Biosens Bioelectron, 2020, 163:112279.
doi: 10.1016/j.bios.2020.112279 URL |
[26] |
Rong YW, Ali S, Ouyang Q, et al. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition[J]. Food Chem, 2021, 351:129215.
doi: 10.1016/j.foodchem.2021.129215 URL |
[27] |
Ma YH, Fu S, Tan YX, et al. Design and synjournal of highly fluorescent and stable fullerene nanoparticles as probes for folic acid detection and targeted cancer cell imaging[J]. Nanotechnology, 2021, 32(19):195501.
doi: 10.1088/1361-6528/abdf02 URL |
[28] | Liu Y, Yu Y, Lam JW, et al. Simple biosensor with high selectivity and sensitivity:thiol-specific biomolecular probing and intracellular imaging by AIE fluorogen on a TLC plate through a thiol-ene click mechanism[J]. Chemistry, 2010, 16(28):8433-8438. |
[29] |
Oyman Eyrilmez G, Doran S, Murtezi E, et al. Selective cell adhesion and biosensing applications of bio-active block copolymers prepared by CuAAC/thiol-ene double click reactions[J]. Macromol Biosci, 2015, 15(9):1233-1241.
doi: 10.1002/mabi.201500099 pmid: 25974890 |
[30] | Hynes WF, Doty NJ, Zarembinski TI, et al. Micropatterning of 3D microenvironments for living biosensor applications[J]. Biosensors:Basel, 2014, 4(1):28-44. |
[31] |
Li YL, Bao L, Zhou QL, et al. Functionalized graphene obtained via thiol-ene click reactions as an efficient electrochemical sensor[J]. ChemistrySelect, 2017, 2(29):9284-9290.
doi: 10.1002/slct.201700659 URL |
[32] | Zeng K, Guo ML, Zhang YJ, et al. Thiol-ene click chemistry for the fabrication of Ru(bpy)32+-based solid-state electrochemiluminescence sensor[J]. Electrochem Commun, 2011, 13(12):1353-1356. |
[33] |
Melnik E, Muellner P, Bethge O, et al. Streptavidin binding as a model to characterize thiol-ene chemistry-based polyamine surfaces for reversible photonic protein biosensing[J]. Chem Commun:Camb, 2014, 50(19):2424-2427.
doi: 10.1039/c3cc48640k URL |
[34] |
Hao HY, Huang JJ, Liu P, et al. Rapid buildup arrays with orthogonal biochemistry gradients via light-induced thiol-ene “click” chemistry for high-throughput screening of peptide combinations[J]. Acs Appl Mater Inter, 2020, 12(18):20243-20252.
doi: 10.1021/acsami.0c03199 URL |
[35] |
Buhl M, Vonhören B, Ravoo BJ. Immobilization of enzymes via microcontact printing and thiol-ene click chemistry[J]. Bioconjug Chem, 2015, 26(6):1017-1020.
doi: 10.1021/acs.bioconjchem.5b00282 URL |
[36] |
Colak B, Di Cio S, Gautrot JE. Biofunctionalized patterned polymer brushes via thiol-ene coupling for the control of cell adhesion and the formation of cell arrays[J]. Biomacromolecules, 2018, 19(5):1445-1455.
doi: 10.1021/acs.biomac.7b01436 URL |
[37] |
Huang HY, Liu MY, Tuo X, et al. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging[J]. Appl Surf Sci, 2018, 439:1143-1151.
doi: 10.1016/j.apsusc.2017.12.233 URL |
[38] |
Ruizendaal L, Pujari SP, Gevaerts V, et al. Biofunctional silicon nanoparticles by means of thiol-ene click chemistry[J]. Chem Asian J, 2011, 6(10):2776-2786.
doi: 10.1002/asia.v6.10 URL |
[39] |
Campos MA, Paulusse JM, Zuilhof H. Functional monolayers on oxide-free silicon surfaces via thiol-ene click chemistry[J]. Chem Commun:Camb, 2010, 46(30):5512-5514.
doi: 10.1039/c0cc01264e URL |
[40] |
Robidillo CJT, Aghajamali M, Faramus A, et al. Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction[J]. Nanoscale, 2018, 10(39):18706-18719.
doi: 10.1039/C8NR05368E URL |
[41] |
Muhsir P, Çakmakçi E, Demir S, et al. Amine functional magnetic nanoparticles via waterborne thiol-ene suspension photopolymerization for antibody immobilization[J]. Colloids Surf B:Biointerfaces, 2018, 170:122-128.
doi: 10.1016/j.colsurfb.2018.05.062 URL |
[42] |
Yaşar M, Yöntem FD, Kahraman MV, et al. Polymeric nanoparticles for selective protein recognition by using thiol-ene miniemulsion photopolymerization[J]. J Biomater Sci Polym Ed, 2020, 31(16):2044-2059.
doi: 10.1080/09205063.2020.1793705 URL |
[1] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[2] | HU Xiao-lin, WANG Liang-ting, GU Wei, LUO Yang. Research Progress of Biosensing Strategy Based on CRISPR/Cas System [J]. Biotechnology Bulletin, 2020, 36(3): 69-77. |
[3] | WANG Xin, ZHU Long-jiao, XU Wen-tao, ZHAI Chen, WANG Shu-ya, HUANG Wei-xia. Research Progress on RNA-cleaving DNAzyme in the Detection of Pathogens [J]. Biotechnology Bulletin, 2020, 36(1): 182-192. |
[4] | ZHOU Zi-qi, LI Shu-ting, TIAN Jie-sheng, HE Wan-chong, XU Wen-tao. Research Progress on the Transformation of Magnetotactic Bacteria and Magnetosome Functionalization [J]. Biotechnology Bulletin, 2019, 35(4): 139-150. |
[5] | ZHANG Yang-zi, ZHU Long-jiao, SHAO Xiang-Li, XU Wen-tao. Research Progress on Biosensing and Drug Delivery Mediated by the Staudinger Ligation [J]. Biotechnology Bulletin, 2019, 35(1): 187-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||