Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (6): 269-283.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0074
FENG Bing1(
), YAN Cai-xia1, LIU Yi1, DONG Kai-yue1, ZHAO Nan2, ZHAO Rui1(
), CHEN Shao-liang1
Received:2025-01-16
Online:2025-06-26
Published:2025-06-30
Contact:
ZHAO Rui
E-mail:2193419868@qq.com;ruizhao@bjfu.edu.cn
FENG Bing, YAN Cai-xia, LIU Yi, DONG Kai-yue, ZHAO Nan, ZHAO Rui, CHEN Shao-liang. Populus × canescens AHL17 Negatively Regulates Tolerance to Cadmium in Arabidopsis thaliana[J]. Biotechnology Bulletin, 2025, 41(6): 269-283.
引物名称 Primer name | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') |
|---|---|---|
| PcUBQ | AGACCTACACCAAGCCCAAGAAGA | CCAGCACCGCACTCAGCATTAG |
| AtACTIN2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGGTCCAGTAAGAGGAA |
| AtPER1 | CGTGCCCTTCATATTGTTGG | GACGCCATCAACAACGAGTC |
| AtCAT3 | CTTGTGGTTCCTGGAATCTACT | AGGATCAAACTTTGAGGGGTAG |
| PcAHL17 | GGGGCCCGGGGTCGACATGAAAGGTGAATATGCAGAACATC | CCATGGTACCGGATCCAAAAGGCGGTGGTGGTGG |
| PcAHL17-RT-qPCR | CAAACCCAAACCACCCGTTAT | TGTTGCCGATGGCTGACG |
Table 1 Primers used in this study
引物名称 Primer name | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') |
|---|---|---|
| PcUBQ | AGACCTACACCAAGCCCAAGAAGA | CCAGCACCGCACTCAGCATTAG |
| AtACTIN2 | GGTAACATTGTGCTCAGTGGTGG | AACGACCTTAATCTTCATGCTGC |
| AtSOD1 | AGGAAACATCACTGTTGGAGAT | GAGTTTGGTCCAGTAAGAGGAA |
| AtPER1 | CGTGCCCTTCATATTGTTGG | GACGCCATCAACAACGAGTC |
| AtCAT3 | CTTGTGGTTCCTGGAATCTACT | AGGATCAAACTTTGAGGGGTAG |
| PcAHL17 | GGGGCCCGGGGTCGACATGAAAGGTGAATATGCAGAACATC | CCATGGTACCGGATCCAAAAGGCGGTGGTGGTGG |
| PcAHL17-RT-qPCR | CAAACCCAAACCACCCGTTAT | TGTTGCCGATGGCTGACG |
Fig. 1 Sequence analysis of PcAHL17 protein in Populus × canescensA: Multiple sequence alignment of AHL17 amino acid sequences between Populus×canescens and other species. B: Construction of evolutionary tree. Pc: Populus × canescens;Pa: Populus alba; Pt: Populus trichocarpa; Pn: Populus nigra; Ss: Salix suchowensis; Sp: Salix purpurea; Me: Manihot esculenta; Gm: Glycine max; At: Arabidopsis thaliana; Nt: Nicotiana tabacum; Gh: Gossypium hirsutum; Hb: Hevea brasiliensis; Tc: Theobroma cacao; Cs: Camelina sativa
Fig. 2 Changes of PcAHL17 gene expression in the roots, stems and leaves of Populus × canescens under cadmium stressThe data are the means of three repeated experimental results, with error bars indicating the standard deviation. Different lowercase letters denote significant differences (P<0.05), the same below
Fig. 3 DNA identification and fluorescence quantitative PCR identification of A. thaliana transformed by PcAHL17 in Populus×canescensA: DNA detection of T2 genaration. B: Expression of PcAHL17 gene in wild-type, vector control, overexpressing A. thaliana, AtACTIN2 was used as internal control gene
Fig. 5 Germination rates of A. thaliana on the media containing different concentrations of CdCl2A: Effects of CdCl2 on seed germination. B: Statistical analysis of the seed germination rate
Fig. 6 Effects of CdCl2 on the growth of root length of A.thalianaA: Effects of CdCl2 on the growth of root length. B: Analysis of root growth. The white lines indicate the growth position of Arabidopsis roots
Fig. 10 Analysis of Cd2+ content in A. thaliana under cadmium stressA: Cd2+ content in aboveground parts of A. thaliana.B:Cd2+ content in underground parts of A. thaliana.C:Steady Cd2+ flux kinetics in A. thaliana root tips. D: The fluorescence intensity of Cd2+ in the root-tip cells of A. thaliana under CdCl2 treatment
| 1 | Zhang J, Martinoia E, Lee Y. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development [J]. Plant Cell Physiol, 2018, 59(7): 1317-1325. |
| 2 | Li SL, Yang WH, Yang TT, et al. Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant [J]. Int J Phytoremediation, 2015, 17(1-6): 85-92. |
| 3 | Iqbal N, Masood A, Syeed S. Cadmium toxicity in plants and role of mineral nutrients in its alleviation [J]. Am J Plant Sci, 201, 3(10): 1476-1489. |
| 4 | Sharma P, Jha A, Dubey R, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions [J]. J Bot, 2012, 2012: 1-26. |
| 5 | Cui WN, Wang HT, Song J, et al. Cell cycle arrest mediated by Cd-induced DNA damage in Arabidopsis root tips [J]. Ecotoxicol Environ Saf, 2017, 145: 569-574. |
| 6 | 焦文献, 彭彬, 苏鹏. 不同高山树种中重金属镉迁移富集研究 [J]. 现代农业研究, 2024, 30(8): 1-5. |
| Jiao WX, Peng B, Su P. Study on migration and enrichment of heavy metal cadmium in different alpine tree species [J]. Mod Agric Res, 2024, 30(8): 1-5. | |
| 7 | 卢赛, 谷海红, 艾艳君, 等. 紫花苜蓿对钒钛磁铁尾矿重金属铜和镉的吸收、转运特性 [J]. 矿产综合利用, 2025, 46(2): 72-80. |
| Lu S, Gu HH, Ai YJ, et al. Absorption and transport of heavy metals copper and cadmium in alfalfa from vanadium-titanium magnetite tailings [J]. Multipurp Util Miner Resour, 2025, 46(2): 72-80. | |
| 8 | 黄意成, 范拴喜, 李丹, 等. 菊芋 (Helianthus tuberosus) 对镉、铅、锌复合污染土壤的修复潜力 [J]. 地球与环境, 2024, 52(1): 96-103. |
| Huang YC, Fan SX, Li D, et al. Remediation potential of Helianthus tuberosus on cadmium, lead and zinc compound contaminated soil [J]. Earth Environ, 2024, 52(1): 96-103. | |
| 9 | Wang LY, Li TT, Liu N, et al. Identification of tomato AHL gene families and functional analysis their roles in fruit development and abiotic stress response [J]. Plant Physiol Biochem, 2023, 202: 107931. |
| 10 | 张贵慰, 曾珏, 郭维, 等. 水稻AT-hook基因家族生物信息学分析 [J]. 植物学报, 2014, 49(1): 49-62. |
| Zhang GW, Zeng J, Guo W, et al. Bioinformatics analysis of the AT-hook gene family in rice [J]. Chin Bull Bot, 2014, 49(1): 49-62. | |
| 11 | 丁丽雪, 李涛, 李植良, 等. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析 [J]. 植物遗传资源学报, 2016, 17(2): 303-315. |
| Ding LX, Li T, Li ZL, et al. Genome-wide identification and expression analysis in oxidative stress of AT-hook gene family in tomato [J]. J Plant Genet Resour, 2016, 17(2): 303-315. | |
| 12 | Aravind L, Landsman D. AT-hook motifs identified in a wide variety of DNA-binding proteins [J]. Nucleic Acids Res, 1998, 26(19): 4413-4421. |
| 13 | Do HJ, Song H, Yang HM, et al. Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor [J]. FEBS Lett, 2006, 580(7): 1865-1871. |
| 14 | Zhao JF, Favero DS, Peng H, et al. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain [J]. Proc Natl Acad Sci USA, 2013, 110(48): E4688-E4697. |
| 15 | Fujimoto S, Matsunaga S, Yonemura M, et al. Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces [J]. Plant Mol Biol, 2004, 56(2): 225-239. |
| 16 | Bishop EH, Kumar R, Luo F, et al. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize [J]. Genomics, 2020, 112(2): 1233-1244. |
| 17 | Lim PO, Kim Y, Breeze E, et al. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants [J]. Plant J, 2007, 52(6): 1140-1153. |
| 18 | Matsushita A, Furumoto T, Ishida S, et al. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase [J]. Plant Physiol, 2007, 143(3): 1152-1162. |
| 19 | Street IH, Shah PK, Smith AM, et al. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis [J]. Plant J, 2008, 54(1): 1-14. |
| 20 | Yun J, Kim YS, Jung JH, et al. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis [J]. J Biol Chem, 2012, 287(19): 15307-15316. |
| 21 | Vom Endt D, Soares e Silva M, Kijne JW, et al. Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins [J]. Plant Physiol, 2007, 144(3): 1680-1689. |
| 22 | Martínez-García JF, Quail PH. The HMG-I/Y protein PF1 stimulates binding of the transcriptional activator GT-2 to the PHYA gene promoter [J]. Plant J, 1999, 18(2): 173-183. |
| 23 | Jin Y, Luo Q, Tong HN, et al. An AT-hook gene is required for Palea formation and floral organ number control in rice [J]. Dev Biol, 2011, 359(2): 277-288. |
| 24 | Delaney SK, Orford SJ, Martin-Harris M, et al. The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1 [J]. Plant Cell Physiol, 2007, 48(10): 1426-1437. |
| 25 | 胡冬秀, 刘浩, 梁炫强, 等. 花生AT-hook家族基因的生物信息学分析 [J]. 热带作物学报, 2021, 42(3): 649-659. |
| Hu DX, Liu H, Liang XQ, et al. Bioinformatics analysis of AT-hook genes family in peanut(Arachis hypogaea L.) [J]. Chin J Trop Crops, 2021, 42(3): 649-659. | |
| 26 | 刘行行, 种培芳. 胡杨AHL基因家族生物信息学分析及逆境胁迫下的表达特征 [J]. 草地学报, 2023, 31(3): 741-750. |
| Liu HH, Chong PF. Bioinformatics analysis of the AHL gene family in Populus euphratica and its expression characteristics under stress [J]. Acta Agrestia Sin, 2023, 31(3): 741-750. | |
| 27 | 马超峰. 灰杨(Populus × canescens)PcHMA4的基因克隆和表达分析研究 [D]. 杨凌: 西北农林科技大学, 2014. |
| Ma CF. Molecular cloning and expression analysis of PcHMA4 in Populus × canescens [D]. Yangling: Northwest A & F University, 2014. | |
| 28 | 何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究 [D]. 杨凌: 西北农林科技大学, 2014. |
| He JL. A study on mechanisms of molecular and pgysiological responses to cadmium in Populus species[D]. Yangling: Northwest A & F University, 2014. | |
| 29 | Komárková M, Chromý J, Pokorná E, et al. Physiological and transcriptomic response of grey poplar (Populus × canescens aiton Sm.) to cadmium stress [J]. Plants, 2020, 9(11): 1485. |
| 30 | 张超. 外源脱落酸对灰杨(Populus × canescens)响应镉胁迫的影响 [D]. 杨凌: 西北农林科技大学, 2014. |
| Zhang C. The impact of exogenous abscisic acid on poplar (Populus × canescens) exposed to cadmium[D]. Yangling: Northwest A & F University, 2014. | |
| 31 | Deng C, Zhu ZM, Liu J, et al. Ectomycorrhizal fungal strains facilitate Cd2+ enrichment in a woody hyperaccumulator under co-existing stress of cadmium and salt [J]. Int J Mol Sci, 2021, 22(21): 11651. |
| 32 | Zhang YH, Sa G, Zhang Y, et al. Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal Populus × canescens under cadmium stress. Front Plant Sci. 2017, 7: 1975. |
| 33 | 刘晓婧, 温馨, 赵瑞, 等. 胡杨PeCSP1过表达负调控拟南芥耐盐性 [J]. 北京林业大学学报, 2023, 45(7): 9-17. |
| Liu XJ, Wen X, Zhao R, et al. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana [J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. | |
| 34 | 安珂悦, 马思圆, 李静, 等. 胡杨PeMAX2对拟南芥镉吸收和耐受能力的影响 [J]. 河南农业大学学报, 2025, 59(2): 233-242. |
| An KY, Ma SY, Li J, et al. Effects of Populus euphratica PeMAX2 on cadmium uptake and tolerance in Arabidopsis [J]. China Ind Econ, 2025, 59(2): 233-242. | |
| 35 | Zhang YN, Sa G, Zhang Y, et al. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis [J]. J Hazard Mater, 2021, 405: 124063. |
| 36 | Yan CX, Feng B, Zhao ZY, et al. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis [J]. Plant Sci, 2024, 344: 112082. |
| 37 | Yin KX, Liu Y, Liu Z, et al. Populus euphratica CPK21 interacts with NF-YC3 to enhance cadmium tolerance in Arabidopsis [J]. Int J Mol Sci, 2024, 25(13): 7214. |
| 38 | Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins [J]. Science, 2009, 324(5930): 1068-1071. |
| 39 | Aponte H, Meli P, Butler B, et al. Meta-analysis of heavy metal effects on soil enzyme activities [J]. Sci Total Environ, 2020, 737: 139744. |
| 40 | Xue WJ, Zhang X, Zhang CB, et al. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice [J]. Chemosphere, 2023, 327: 138511. |
| 41 | Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses [J]. Free Radic Biol Med, 2018, 122: 4-20. |
| 42 | Makhtoum S, Sabouri H, Gholizadeh A, et al. Genomics and physiology of chlorophyll fluorescence parameters in Hordeum vulgare L. under drought and salt stresses [J]. Plants, 2023, 12(19): 3515. |
| 43 | 杨居荣, 贺建群, 蒋婉茹. Cd污染对植物生理生化的影响 [J]. 农业环境保护, 1995, 14(5): 193-197. |
| Yang JR, He JQ, Jiang WR. Effects of Cd contamination on plant physiology and biochemistry [J]. J Agro Environ Sci, 1995, 14(5): 193-197. | |
| 44 | Pagliano C, Raviolo M, Dalla Vecchia F, et al. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.) [J]. J Photochem Photobiol B, 2006, 84(1): 70-78. |
| 45 | Riaz M, Kamran M, Rizwan M, et al. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review [J]. Chemosphere, 2021, 273: 129690. |
| 46 | Liu HT, Jiao QJ, Fan LN, et al. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat [J]. J Hazard Mater, 2023, 452: 131366. |
| 47 | 魏畅, 焦秋娟, 柳海涛, 等. 镉暴露条件下玉米生长及根系构型分级特征研究 [J]. 草业学报, 2022, 31(3): 101-113. |
| Wei C, Jiao QJ, Liu HT, et al. Physiological effects of different Cd concentrations on maize root architecture and classification [J]. Acta Pratac Sin, 2022, 31(3): 101-113. | |
| 48 | 孙亚莉, 刘红梅, 徐庆国. 镉胁迫对不同水稻品种苗期光合特性与生理生化特性的影响 [J]. 华北农学报, 2017, 32(4): 176-181. |
| Sun YL, Liu HM, Xu QG. Effect of cadmium stress on photosynthetic characteristics and physiological and biochemical traits during seedling stage of different rice cultivars [J]. Acta Agric Boreali Sin, 2017, 32(4): 176-181. | |
| 49 | Shi ZY, Yang SQ, Han D, et al. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity [J]. Environ Sci Pollut Res Int, 2018, 25(8): 7638-7646. |
| [1] | ZHOU Zhi-guo, FAN Shuang-hu, DENG Chen, FENG Xue. Effects of Exogenous 2,4-Epibrassinolide on Physiological Characteristics of Daucus carota L. Seedlings under Cadmium Stress [J]. Biotechnology Bulletin, 2025, 41(5): 165-174. |
| [2] | WANG Bin, WANG Yu-kun, XIAO Yan-hui. Comparative Transcriptomic Analysis of Clove Basil (Ocimum gratissimum) Leaves in Response to Cadmium Stress [J]. Biotechnology Bulletin, 2025, 41(3): 255-270. |
| [3] | WU Zhi-jian, LIU Guang-yang, LIN Zhi-hao, SHENG Bin, CHEN Ge, XU Xiao-min, WANG Jun-wei, XU Dong-hui. Research Progress of Nano-regulation of Vegetable Seed Germination and Its Mechanism [J]. Biotechnology Bulletin, 2025, 41(1): 14-24. |
| [4] | WEN Jing, LI Qian-qian, ZHANG Ming-da, TAN Ming-yue, JIN Bo-yang, SHEN XIU-li, DU Zhi-qiang. Molecular Mechanism of Duox 2 Regulating Innate Immunity against Bacteria in Procambarus clarkii Intestine [J]. Biotechnology Bulletin, 2025, 41(1): 324-332. |
| [5] | CAI Zhi-cheng, WANG Yuan-yuan, SANG Xiao-han, ZENG Li-xian, DENG Wen-tao, WANG Jia-mei. Research Progress of Cold Plasma Activated Solution in Antibacteria and Removing Biofilm [J]. Biotechnology Bulletin, 2024, 40(6): 95-104. |
| [6] | ZOU Xiu-wei, YUE Jia-ni, LI Zhi-yu, DAI Liang-ying, LI Wei. Functional Analysis of Rice Heat Shock Transcription Factor HsfA2b Regulating the Resistance to Abiotic Stresses [J]. Biotechnology Bulletin, 2024, 40(2): 90-98. |
| [7] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
| [8] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
| [9] | ZHU Ye-sheng, WU Guo-qiang, WEI Ming. Roles of Plasma Membrane Na+/H+ Antiporter SOS1 in Maintaining Ionic Homeostasis of Plants [J]. Biotechnology Bulletin, 2023, 39(12): 16-32. |
| [10] | ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 36-43. |
| [11] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
| [12] | HU Yan-jiao, CHEN Mei-feng, QIANG Yu, LI Hai-yan, LIU Jing, QIN Fan-xin. Alleviation Mechanisms of Zinc-selenium Interaction on the Cadmium Toxicity in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 143-152. |
| [13] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
| [14] | YANG Fu-rong, WANG Xiao-hong, XIAO Qi, FANG Juan, LI Li-hua. Physiological Response of Hibiscus syriacus Varieties to Cadmium Stress and Evaluation of Cadmium Tolerance [J]. Biotechnology Bulletin, 2022, 38(1): 98-107. |
| [15] | LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 165-173. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||