[1] 杨培龙, 姚斌. 饲料用酶制剂的研究进展与趋势[J]. 生物工程学报, 2009(12):1844-1851. [2] Edwards JE, Mcewan NR, Travis AJ, et al. 16S rDNA library-based analysis of ruminal bacterial diversity[J]. Antonie Van Leeuwenhoek, 2004, 86(3):263-281. [3] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes a new frontier for natural products[J]. Chemistry & Biology, 1988, 5(10):R245-R249. [4] 王佳堃, 安培培, 刘建新. 宏基因组学用于瘤胃微生物代谢的研究进展[J]. 动物营养学报, 2010, 22(3):527-535. [5] 赵圣国, 王加启, 刘开朗, 等. 动物胃肠道微生物元基因组学研究进展[J]. 生物技术通报, 2009(9):18-22. [6] Xing MN, Zhang XZ, Huang H. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis[J]. Biotechnology Advances, 2012, 30(4):920-929. [7] 秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011, 51(4):445-457. [8] 王兴春, 杨致荣, 王敏, 等. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012, 32(1):109-114. [9] 赵广存, 段承杰, 庞浩, 等. 牛瘤胃未培养细菌中一个 β-葡萄糖苷酶基因 umbgl3A 的克隆及鉴定[J]. 西南农业学报, 2005, 18(4):472-476. [10] Wang F, Li F, Chen G, et al. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different enviro-nmental niches[J]. Microbiological Research, 2009, 164(6):650-657. [11] Duan CJ, Xian L, Zhao GC, et al. Isolation and partial characteriz-ation of novel genes encoding acidic cellulases from metagenomes of buffalo rumens[J]. Journal of Applied Microbiology, 2009, 107(1):245-256. [12] Findley SD, Mormile MR, Sommer-Hurley A, et al. Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases[J]. Applied and Environmental Microbiology, 2011, 77(22):8106-8113. [13] Del Pozo MV, Fernandez-Arrojo L, Gil-Martinez J, et al. Microbial beta-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail[J]. Biotechnology for Biofuels, 2012, 5(1):73. [14] 冯仰廉. 反刍动物营养学[M] . 北京:科学出版社, 2004. [15] Wong DW, Chan VJ, Batt SB. Cloning and characterization of a novel exo-alpha-1, 5-L-arabinanase gene and the enzyme[J]. Applied Microbiology and Biotechnology, 2008, 79(6):941-949. [16] 冯国栋, 许艳艳, 吕丹青, 等. 一个新型湖羊瘤胃木聚糖酶基因的克隆和鉴定[J]. 科技通报, 2010, 26(3):345-349. [17] 王佳堃, 安培培, 陈振明, 等. 湖羊瘤胃微生物Fosmid文库的构建和分析[J]. 动物营养学报, 2010, 22(2):341-345. [18] Zhao SG, Wang JQ, Bu DP, et al. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library[J]. Applied and Environmental Microbiology, 2010, 76(19):6701-6705. [19] 王敏, 陈富荣, 张山, 等. 牦牛瘤胃元基因组文库中木聚糖酶基因的分析[J]. 微生物学报, 2011, 51(10):1364-1373. [20] Wang J, Sun Z, Zhou Y, et al. Screening of a xylanase clone from a fosmid library of rumen microbiota in Hu sheep[J]. Animal Biotechnology, 2012, 23(3):156-173. [21] Gong X, Gruniniger RJ, Forster RJ, et al. Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library[J]. Applied Microbiology and Biotechnology, 2013, 97(6):2423-2431. [22] Ferrer M, Golyshina OV, Chernikova TN, et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora[J]. Environmental Microbiology, 2005, 7(12):1996-2010. [23] 朱雅新, 王加启, 马润林, 等. 荷斯坦奶牛瘤胃微生物元基因组BAC文库的构建与分析[J]. 微生物学报, 2007, 47(2):213-216. [24] 赵静雯, 王加启, 赵圣国, 等. 瘤胃微生物Fosmid文库蛋白酶活性克隆的筛选与序列分析[J]. 农业生物技术学报, 2012, 20(7):831-836. [25] 赵静雯, 王加启, 赵圣国, 等. 奶牛瘤胃微生物元基因组文库中二肽基肽酶Ⅳ的筛选与分析[J]. 中国农业科学, 2013, 46(8):1687-1693. [26] Lopez-Cortes N, Reyes-Duarte D, Beloqui A, et al. Catalytic role of conserved HQGE motif in the CE6 carbohydrate esterase family[J]. FEBS Letters, 2007, 581(24):4657-4662. [27] 赵圣国, 王加启, 刘开朗, 等. 奶牛瘤胃微生物元基因组文库中脂肪酶的筛选与酶学性质[J]. 生物工程学报, 2009, 25(6):869-874. [28] Liu KL, Wang JQ, Bu DP, et al. Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen[J]. Biochemical and Biophysical Research Communication, 2009, 385(4):605-611. [29] Bayer S, Kunert A, Ballschmiter M, et al. Indication for a new lipolytic enzyme family:isolation and characterization of two esterases from a metagenomic library[J]. Journal of Molecular Microbiology Biotechnology, 2010, 18(3):181-187. [30] Wong DWS, Chan VJ, Liao H, et al. Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(3-4):287-295. [31] Palackal N, Lyon CS, Zaidi S, et al. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut[J]. Applied Microbiology and Biotechnology, 2007, 74(1):113-124. [32] Bao L, Huang Q, Chang L, et al. Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome[J]. Journal of Molecular Catalysis B-Enzymatic, 2011, 73(1-4):104-110. [33] Chang L, Ding M, Bao L, et al. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms[J]. Applied Microbiology and Biotechnology, 2011, 90(6):1933-1942. [34] Bao L, Huang Q, Chang L, et al. Cloning and characterization of two beta-glucosidase/xylosidase enzymes from yak rumen metagenome[J]. Applied Microbiology and Biotechnology, 2012, 166(1):72-86. [35] Rashamuse KJ, Visser DF, Hennessy F, et al. Characterisation of two bifunctional cellulase-xylanase enzymes isolated from a bovine rumen metagenome library[J]. Current Microbiology, 2013, 66(2):145-151. [36] Ko K, Han Y, Cheong D, et al. Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system[J]. Journal of Microbiological Methods, 2013, 94(3):311-316. [37] Ko K, Lee JH, Han Y, et al. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria[J]. Biochemical and Biophysical Research Communications, 2013, 441(3):567-572. [38] Beloqui A, Pita M, Polaina J, et al. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen:biochemical properties, structural analysis, and phylogenetic relationships[J]. Journal of Biological Chemistry, 2006, 281(32):22933-22942. [39] 赵圣国, 王加启, 卜登攀, 等. 奶牛瘤胃微生物BAC文库中脲酶克隆的筛选与分析[J]. 中国农业大学学报, 2008, 13(6):61-65. [40] Math RK, Asraful Islam SM, Cho KM, et al. Isolation of a novel gene encoding a 3, 5, 6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library[J]. Biodegradation, 2010, 21(4):565-573. [41] 郭鸿, 封毅, 莫新春, 等. 水牛瘤胃宏基因组的一个新的b-葡萄糖苷酶基因umcel3G的克隆、表达及其表达产物的酶学特性[J]. 生物工程学报, 2008, 24(2):232-238. [42] Ferrer M, Beloqui A, Golyshina OV, et al. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome[J]. Biotechnology Journal, 2007, 2(2):207-213. [43] Brulc JM, Antonopoulos DA, Miller ME, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases[J]. Proceedings of the National Academy of Sciences, 2009, 106(6):1948-1953. [44] Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen[J]. Science, 2011, 331(6016):463-467. [45] Dai X, Zhu YX, Luo YF, et al. Metagenomic insights into the fibrolytic microbiome in yak rumen[J]. PLoS One, 2012, 7(7):e40430. [46] Pope PB, Mackenzie AK, Gregor I, et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci[J]. PLoS One, 2012, 7(6):e38571. [47] Wang L, Hatem A, Catalyurek UV, et al. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows[J]. PLoS One, 2013, 8(11):e78507. [48] Singh KM, Reddy B, Patel D, et al. High potential source for biomass degradation enzyme discovery and environmental aspects revealed through metagenomics of indian buffalo rumen[J]. BioMed Research International, 2014:267189. doi:10. 1155/2014/267189. [49] Patel DD, Patel AK, Parmar NR, et al. Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet[J]. Gene, 2014, 545(1):88-94. |