[1] 史庆华, 赖齐贤, 朱祝军, 等.一氧化氮在植物中的生理功能[J].细胞生物学杂志, 2005, 6(1):39-42. [2] Del Rio LA.Peroxisomes as a cellular source of reactive nitrogen species signal molecules[J].Arch Biochem Biophys, 2011, 506(1):1-11. [3] 于肇端.外源NO缓解黄瓜、油菜幼苗胁迫的生理效应[D].泰安:山东农业大学, 2010. [4] Sanz L, Albertos P, Mateos I, et al.Nitric oxide(NO)and phytohormones crosstalk during early plant development[J].J Exp Bot, 2015, 66(10):2857-2868. [5] Frohlich A, Durner J.The hunt for plant nitric oxide synthase(NOS):is one really needed?[J].Plant Sci, 2011, 181(4):401-404. [6]Sirovfi J, Sedlfii-ovfi M, Piterkovfi J, et al.The role of nitric oxide in the germination of plant seeds and pollen[J].Plant Sci, 2011, 181(5):560-572. [7] Bethke PC, Badger MR, Jonesa RI.Apoplastic synthesis of nitric oxide by plant tissues[J].The Plant Cell, 2004, 16(2):332-341. [8] Rosales EP, Iannone MF, Groppa MD.Benavides MP.Polyamines modulate nitrate reductase activity in wheat leaves:involvement of nitric oxide[J].Amino Acids, 2012, 42(2-3):857-865. [9] Kolbert Z, Ortega L, Erdei L.Involvement of nitrate reductase(NR)in osmotic stress—induced NO generation of Arabidopsis thaliana L. roots[J].Plant Physiol, 2010, 167(1):77-80. [10]赵敏桂.气体信号分子一氧化氮和乙烯的生物学功能:一氧化氮在植物盐胁迫中的作用和乙烯激活钙离子通道[D].北京:中国科学院, 2008. [11]Jin CW, Du ST, Shamsi IH, et al.NO synthase--generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants[J].J Exp Bot, 2011, 62(11):3875-3884. [12] Blokhina O, Fagerstedt KV.Oxidative metabolism, ROS and NO under oxygen deprivation[J].Plant Physiol Biochem, 2010, 48(5):359-373. [13]赵秀峰.一氧化氮对水稻幼苗镉毒害的缓解效应及生理机制[D].南京:南京农业大学, 2012. [14]Hancock JT.NO synthase? Generation of nitric oxide in plants[J].Period Biol, 2012, 114(1):19-24. [15]Bettina S, Buchmaie R, Asima B, et al.Renal cells express different forms of vimentin:the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis[J].PLoS One, 2013, 8(7):e68301. [16]Liao WB, Huang GB, Yu JH, et al.Nitrc oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development[J].Plant Physiol Biochem, 2012, 58(9):6-15. [17]Moreau M, Lindermayr C, Durner J, Klessig DF.NO synthesis and signaling in plants—where do we stand?[J].Physiol Plant, 2010, 138(4):372-383. [18]魏晓雪.外源NO对UV-B胁迫下红松生理特性的影响[D].哈尔滨:东北林业大学, 2011. [19] 余叔文, 汤章程.植物生理与分子生物学[M].第2版.北京:科学出版社, 1998. [20]柯贞进, 尹美强, 温银元, 等.干旱胁迫下聚丙烯酰胺对谷子种子萌发及幼苗期抗旱性的影响[J].核农学报, 2015, 29(3):563-570. [21]裴帅帅, 尹美强, 温银元, 等.不同品种谷子种子萌发期对干旱胁迫的生理响应及抗旱性评价[J].核农学报, 2014, 28(10):1897-1904. [22]刘小敏.拟南芥微管结合蛋白WDL3调控下胚轴生长的分子机理[D].北京:中国农业大学, 2014. [23]张运刚.微管骨架在拟南芥根响应渗透胁迫中的作用[D].重庆:重庆大学, 2012. [24]林抒豪, 石玉秀, 韩芳.细胞凋亡与真核细胞骨架蛋白相关性的研究进展[J].解剖科学进展, 2015, 21(2):207-210. [25]李翠芳.外源一氧化氮对盐胁迫下棉苗主要形态和生理性状的影响[D].保定:河北农业大学, 2012. [26]郭爱华.He-Ne 激光和增强 UV-B 辐射对小麦幼苗微管蛋白及微管骨架的影响[D].临汾:山西师范大学, 2010. [27]李合生.现代植物生理学[M].北京:高等教育出版社, 2002:415-419. [28]廖俊杰, 吴英杰, 阎隆飞.萱草花粉中微管蛋白生物化学性质[J].云南植物研究, 2006, 28(4):425-428. [29]高素娟, 张丽丽, 王小菁.微管动态不稳定性及其微管排向的光调控[J].天水师范学院学报, 2009, 29(5):16-19. [30]程娜娜, 刘福霞, 马爱珍, 韩榕.增强UV-B辐射对拟南芥叶片微管蛋白的影响[J].生物学杂志, 2013, 30(4):33-37. [31]时兰春, 王伯.微丝、微管骨架在拟南芥细胞机械响应中的作用[D].重庆:重庆大学, 2011. |