[1] Niu Y, Shen B, Cui Y, et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in One-cell embryos[J]. Cell, 2014, 156(4):836-843. [2] Wang X, Niu Y, Zhou J, et al.Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J]. Scientific Reports, 2016, 6(1):32271. [3] Wang X, Yu H, Lei A, et al.Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Scientific Reports, 2015, 5(1):13878. [4] Yu HH, Zhao H, Qing YB, et al.Porcine zygote injection with Cas9/sgRNAResults in DMD-modified pig with muscle dystrophy[J]. International Journal of Molecular Sciences, 2016, 17:1668. [5] Bibikova M, Beumer K, Trautman JK, et al.Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764-764. [6] Liu H, Liu C, Zhao YH, et al.Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. Journal of Integrative Agriculture, 2018, 17(2):406-414. [7] Cong L, Zhang F.Genome engineering using CRISPR-Cas9 system[M]// Pruett-Miller SM, editor. Chromosomal Mutagenesis. New York:Springer New York, 2015:197-217. [8] Demirbas D, Coelho AI, Rubio-Gozalbo ME, et al.Hereditary galactosemia[J]. Metabolism, 2018, 83:188-196. [9] Timson DJ.The molecular basis of galactosemia — Past, present and future[J]. Gene, 2016, 589(2):133-141. [10] Pyhtila BM, Shaw KA, Neumann SE, et al.Erratum to:newborn screening for galactosemia in the united states:looking back, looking around, and looking ahead[M]//Zschocke J, Gibson KM, Brown G, Morava E, Peters V, editors. JIMD Reports, Volume 15. Berlin, Heidelberg:Springer Berlin Heidelberg, 2015:133. [11] Openo KK, Schulz JM, Vargas CA, et al.Epimerase-deficiency galactosemia is not a binary condition[J]. The American Journal of Human Genetics, 2006, 78(1):89-102. [12] Canson DM, Silao CLT, Caoili SEC.Functional analysis of GALT variants found in classic galactosemia patients using a novel cell-free translation method[J]. JIMD Reports, 2019, 48(1):60-66. [13] Yuzyuk T, Balakrishnan B, Schwarz EL, et al.Effect of genotype on galactose-1-phosphate in classic galactosemia patients[J]. Molecular Genetics and Metabolism, 2018, 125(3):258-265. [14] Tyfield L, Reichardt J, Fridovich-Keil J, et al.Classical galactose-mia and mutations at the galactose-1-phosphate uridyl transferase(GALT)gene[J]. Human Mutation, 1999, 13(6):417-430. [15] Lukac-Bajalo J, Kuzelicki NK, Zitnik IP, et al.Higher frequency of the galactose-1-phosphate uridyl transferase gene K285N mutation in the Slovenian population[J]. Clinical Biochemistry, 2007, 40(5):414-415. [16] 杨茹莱, 童凡, 洪芳, 等. 新生儿半乳糖血症筛查及基因谱分析[J]. 中华儿科杂志, 2017, 55(2):104-108. Yang RL, Tong F, Hong F, et al.Screening and gene profiling of neonatal galactosemia[J]. Chinese Journal of Pediatrics, 2017, 55(2):104-108. [17] Udhaya Kumar S, Tbirumal Kumar D, Siva R, et al.An extensive computational approach to analyze and characterize the functional mutations in the galactose-1-phosphate uridyl transferase(GALT)protein responsible for classical galactosemia[J]. Comput Biol Med, 2020, 117:103583. [18] Bosch AM, Bakker HD, van Gennip AH, et al. Clinical features of galactokinase deficiency:A review of the literature[J]. Journal of Inherited Metabolic Disease, 2003, 25(8):629-634. [19] Cerone J, Rios A.Galactosemia[J]. Pediatrics in Review, 2019, 40(Suppl. 1):24-27. [20] Liu L, Tang M, Walsh MJ, et al.Structure activity relationships of human galactokinase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(3):721-727. |