生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 128-140.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1040
收稿日期:
2020-08-17
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
李彩霞,女,博士研究生,研究方向:植物抗逆分子生物学;E-mail: 基金资助:
Received:
2020-08-17
Published:
2021-05-26
Online:
2021-06-11
摘要:
柽柳是广泛分布于荒漠地区的一种极其耐旱、耐盐的多年生灌木。在长期进化过程中,柽柳在形态结构、生理生化及分子生物学等不同层面形成了多种适应性特征,从而适应极端环境。柽柳在种子萌发阶段的特殊机制使其种群得以成功繁衍;为了适应复杂的荒漠环境,柽柳叶片退化成鳞片状,茎叶表面布满盐腺,发育出极其发达的根系,进而在形态结构方面做出相应的适应性改变,并协同渗透调节、抗氧化、高光效等多种生理途径,以及逆境响应信号途径和相关基因的表达调控,共同应对环境胁迫。主要从种子特性、植株形态结构、抗逆生理及分子生物学调控等水平对柽柳适应逆境的机制进行综合论述及展望,以期为柽柳适应机制的深入探索提供参考依据。
李彩霞, 兰海燕. 荒漠植物柽柳抗逆机制的研究进展[J]. 生物技术通报, 2021, 37(5): 128-140.
LI Cai-xia, LAN Hai-yan. Research Progress in the Stress Tolerance Mechanisms of Desert Plant Tamarix spp.[J]. Biotechnology Bulletin, 2021, 37(5): 128-140.
图2 不同时期多枝柽柳叶片形态 A:子叶;B:幼苗和肉质叶;C:成株分枝和抱茎叶。图A、B、C 中的标尺分别为 100、500 和 800 μm
Fig. 2 Leaf morphology of Tamarix ramosissma in different developmental stages A: Cotyledons. B: Seedling and succulent leaves. C: Adult shoot and amplexicaul leaves. The scale bar in A, B, C is 100 μm, 500 μm, and 800 μm
图3 柽柳植株地上地下协同吸水、保水调控机制(参考文献[47,48,49]绘制) 根系左侧箭头代表水力提升过程中水分运动的方向
Fig. 3 Schematic diagram of water absorption and reten-tion regulation of Tamarix above and under ground parts of plant (drawn by reference[47,48,49]) The arrows on the left of the root indicate the directions of water movement during hydraulic lifting
图4 柽柳的盐腺结构、泌盐机制及泌盐影响因素模式图(参考文献[55,65-66]绘制) PO:孔道;PI:胞间微粒;OC:外层分泌细胞;MC 中层分泌细胞;IC:内层分泌细胞;CC:收集细胞;mv:小液泡 ;m:线粒体;n:细胞核;c:角质层;w:细胞壁;v:液泡。箭头代表胞间连丝
Fig. 4 Schematic diagram of salt gland structure, secretion mechanism and influencing factors in Tamarix (drawn by reference [55, 65-66]) PO: Pores. PI: Plasmodesmata. OC: Outer pair of secretory cells. MC: Middle pair of secretory cells. IC: Inner pair of secretory cells. CC: Collecting cells. mv: Microvacuoles. m: Mitochondria. n: Nuclei. c: Cuticle. w: Wall. v: Vacuoles. The arrows represent intercellular hyalines
[1] | 庞新安, 姜喜, 王建勋, 等. 中国柽柳属植物研究进展[J]. 塔里木大学学报, 2008,20(4):90-96. |
Pang XA, Jiang X, Wang JX, et al. Recent progresses in the research of Tamarix L. in China[J]. Journal of Tarim University, 2008,20(4):90-96. | |
[2] | 曾勇. 古尔班通古特沙漠植物多样性对降水变化的敏感性研究[D]. 石河子:石河子大学, 2015. |
Zeng Y. Study of sensitivity of plant diversity to precipitation change in the Gurbantunggut desert[D]. Shihezi:Shihezi University, 2015. | |
[3] | 李占坡. 柽柳引种评价和优良无性系选育研究[D]. 秦皇岛:河北科技师范学院, 2018. |
Li ZP. Evaluation of Tamarix sepecies introduction and breeding of Tamarix chinensis clones[D]. Qinhuangdao:Hebei Normal University of Science and Technology, 2018. | |
[4] |
Chen YR, Yin LK, Bai X. The Influences of surface water-overflowing disturbance on the fluctuations of Tamarix ramosissima community in western China[J]. Acta Ecologica Sinica, 2010,30(5):245-250.
doi: 10.1016/j.chnaes.2010.08.003 URL |
[5] |
Vaziriyeganeh M, Lee SH, Zwiazek JJ. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa jun-cifolia and Puccinellia nuttalliana[J]. Plant Science, 2018,276:54-62.
doi: 10.1016/j.plantsci.2018.08.001 URL |
[6] | Wang YC. Study on expression of genes in Tamarix androssowii under drought stress using cDNA microarray technology[J]. Bulletin of Botanical Research, 2007,27(2):186-194. |
[7] | 张元明, 潘伯荣, 尹林克. 中国干旱区柽柳科植物种子形态特征及其系统学意义[J]. 植物资源与环境学报, 1998,7(2):22-27. |
Zhang YM, Pan BR, Yi LK. Seed morphology of Tamaricaceae in China arid areas and its systematic evolution[J]. Journal of Plant Resources and Environment, 1998,7(2):22-27. | |
[8] | 蒋进, 高海峰. 柽柳属植物抗旱性排序研究[J]. 干旱区研究, 1992,9(4):41-45. |
Jiang J, Gao HF. A study on drought resistant ordination Tamarix L.[J]. Arid Zone Research, 1992. 9(4):41-45. | |
[9] | 张道远, 尹林克, 潘伯荣. 柽柳属植物抗旱性能研究及其应用潜力评价[J]. 中国沙漠, 2003,23(3):46-50. |
Zhang DY, Yi LK, Pan BR. Study on drought-resisting mechanism of Tamarix L. and assessing of its potential application[J]. Journal of Desert Research, 2003,23(3):46-50. | |
[10] |
Terrones A, Moreno J, Agulló JC, et al. Influence of salinity and storage on germination of Tamarix taxa with contrasted ecological requirements[J]. Journal of Arid Environments, 2016,135:17-21.
doi: 10.1016/j.jaridenv.2016.08.001 URL |
[11] | 姬慧娟, 尹林克, 严成. 刚毛柽柳(Tamarix hispida)种子萌发特性的研究[J]. 生物技术, 2008,18(6):35-38. |
Ji HJ, Yin LK, Yan C. Studies on germination characteristics of Tamarix hispida seeds[J]. Biotechnology, 2008,18(6):35-38. | |
[12] | 王磊, 严成, 魏岩, 等. 温度、盐分和储藏时间对多花柽柳种子萌发的影响[J]. 干旱区研究, 2008,25(6):47-51. |
Wang L, Yan C, Wei Y, et al. Study on the effects of temperature, salinity and storing time on the germination of Tamarix hohenackeri seeds[J]. Arid Zone Research, 2008,25(6):47-51.
doi: 10.3724/SP.J.1148.2008.00047 URL |
|
[13] | 魏海霞, 王霞, 王振猛, 等. 甘蒙柽柳种子耐储性及发芽特性研究[J]. 山东林业科技, 2015,45(1):26-29. |
Wei HX, Wang X, Wang ZM, et al. Study on seed storability and sprouting characteristic of Tamarix austromongolica[J]. Shandong Forestry Science and Technology, 2015,45(1):26-29. | |
[14] |
Natale E, Zalba SM, Oggero A, et al. Establishment of Tamarix ra-mosissima under different conditions of salinity and water availability:implications for its management as an invasive species[J]. Journal of Arid Environments, 2010,74(11):1399-1407.
doi: 10.1016/j.jaridenv.2010.05.023 URL |
[15] | Horton JL, Clark JL. Water table decline alters growth and survival of Salix Gooddingii and Tamarix chinensis seedlings[J]. Forest Ecology & Management, 2001,140(2/3):239-247. |
[16] |
Mortenson SG, Weisberg PJ, Stevens LE. The influence of floods and precipitation on Tamarix establishment in grand canyon, arizona:consequences for flow regime restoration[J]. Biological Invasions, 2012,14(5):1061-1076.
doi: 10.1007/s10530-011-0139-z URL |
[17] |
Zhuang L, Chen YN. Physiological response of Tamarix ramosissi-ma under water stress along the lower reaches of Tarim River[J]. Chinese Science Bulletin, 2006,51(9):1123-1129.
doi: 10.1007/s11434-006-1123-3 URL |
[18] | 朱小虎. 塔里木河下游三种盐生植物的种子萌发行为研究[D]. 乌鲁木齐:新疆农业大学, 2009. |
Zhu XH. Study on seed germination behavior of three salinity plants in lower reaches of Tarim River[D]. Urumqi:Xinjiang Agricultural University, 2009. | |
[19] |
Zhang RQ, Ma XD, Wang MH, et al. Effects of salinity and water stress on the physiological and ecological processes and plasticity of Tamarix ramosissima seedlings[J]. Acta Ecologica Sinica, 2016,36(6):433-441.
doi: 10.1016/j.chnaes.2016.09.006 URL |
[20] | 张雪. 盐胁迫对柽柳和白刺种子发芽及幼苗生长的影响[D]. 北京:北京林业大学, 2016. |
Zhang X. Seed germination and seedling growth of Tamarix chinensis and Nitraria tangutorum under salt stress[D]. Beijing:Beijing Forestry University, 2016. | |
[21] | 孙红叶, 李利, 刘国军, 等. 刚毛柽柳种子萌发对盐分与干旱胁迫的响应[J]. 干旱区地理, 2007,30(3):414-419. |
Sun HY, Li L, Liu GJ, et al. Effects of temperature, salt and water stress on the seed germination of Tamarix hispida[J]. Arid Land Geography, 2007,30(3):414-419. | |
[22] | 严成, 魏岩, 王磊. 密花柽柳(Tamarix arceuthoides)春夏两季种子的萌发行为[J]. 干旱区研究, 2010(5):750-754. |
Yan C, Wei Y, Wang L. Study on germination of Tamarix arceut-hoides seeds in spring and summer[J]. Arid Zone Research, 2010,27(5):750-754. | |
[23] | 孟凡翔, 庞玮, 杨姗霖, 等. 密花柽柳春夏两季不同时期种子的萌发特性[J]. 种子, 2018,37(6):31-34, 39. |
Meng FX, Pang W, Yang SL, et al. Seed germination characteristics of Tamarix arceuthoidesin different periods of spring and summer[J]. Seed, 2018,37(6):31-34, 39. | |
[24] |
Scott GD, Kruger EL. Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species[J]. Tree Physiology, 2001,21(18):1341-1346.
doi: 10.1093/treephys/21.18.1341 URL |
[25] | Wei Y, Tai DY, Yi LK. The discusssions on the anatomical structure of leaf and ITS taxonomic relationship of Tamaricaceae in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 1999,19(1):113-118. |
[26] | 公维昌, 庄丽, 赵文勤, 等. 多枝柽柳与梭梭光合器官形态解剖结构的生态适应性[J]. 中国沙漠, 2011,31(1):129-136. |
Gong WC, Zhuang L, Zhao WQ. et al. Ecological adaptation of morphological and anatomical structure of photosynthetic organs of Tamarix ramosissima and Haloxylon ammodendron[J]. Journal of Desert Research, 2011,31(1):129-136. | |
[27] | Wang GY, Fu YP, Yang YH, et al. Study on anatomical structure of Tamarix chinensis[J]. Journal of Changchun Normal University Natural Science, 2009,28(8):43-45. |
[28] |
Zhuang L, Li WH, Yuan F, et al. Ecological adaptation characteristics of populus euphraticaeuphratica and Tamarix ramosissima leaf microstructures in the lower reaches of Tarim River[J]. Acta Ecologica Sinica, 2010,30(2):62-66.
doi: 10.1016/j.chnaes.2010.03.003 URL |
[29] | 王慧娟. 干旱胁迫对刚毛柽柳当年生同化枝形态解剖结构及蛋白质的影响[D]. 北京:北京林业大学, 2008. |
Wang HJ. Effects of drought stress on morphological and anatomical structure and proteins of young assimilating branches of Tamarix hispida Willd[D]. Beijing:Beijing Forestry University, 2008. | |
[30] | 张道远, 张娟, 谭敦炎, 等. 国产柽柳科3属6种植物营养枝的解剖观察[J]. 西北植物学报, 2003,23(3):382-388. |
Zhang DY, Zhang J, Tan DY, et al. Anatomical observation of young branches of 6 species of Tamaricaceae from China[J]. Acta Botanica Boreali-occidentalia Sinica, 2003,23(3):382-388. | |
[31] | 梁爽, 王光野. 盐生植物耐盐结构研究进展[J]. 长春师范大学学报, 2015,34(10):71-74. |
Liang S, Wang GY. Research advance on the salt resistant structures of halophytes[J]. Journal of Changchun Normal University, 2015,34(10):71-74. | |
[32] | 翟诗虹, 王常贵, 高信曾. 柽柳属植物抱茎叶形态结构的比较观察[J]. 植物学报, 1983,25(6):519-525. |
Zhai SH, Wang CG, Gao XZ, Morphological and anatomical observations of clasping leaves of Tamarix L.[J]. Acta Botanica Sinica, 1983,25(6):519-525. | |
[33] | 姚晓玲. 短穗柽柳幼苗形态解剖结构观察[J]. 新疆大学学报:自然科学版, 1998,15(3):77-82. |
Yao XL. Observations on morphology and anatomy about the seedling of Tamarix laxa[J]. Journal of Xinjiang University:Natural Science, 1998,15(3):77-82. | |
[34] | 公维昌, 庄丽, 赵文勤, 等. 两种盐生植物解剖结构的生态适应性[J]. 生态学报, 2009,29(12):6764-6771. |
Gong WC, Zhuang L, Zhao WQ. et al. Anatomical structure and ecological adaptability of two kinds of halophytes(Haloxylon am-mondendron Chenopodiaceae and Tamarix ramosissima Amaranthaceae)[J]. Acta Ecologica Sinica, 2011,29(12):6764-6771. | |
[35] |
Yu TF, Feng Q, Si JH, et al. Patterns, magnitude, and controlling factors of hydraulic redistribution of soil water by Tamarix ramo-sissima roots[J]. Journal of Arid Land, 2013,5(3):396-407.
doi: 10.1007/s40333-013-0173-z URL |
[36] |
Cleverly JR, Smith SD, Sala A, et al. Invasive capacity of Tamarixramosissima in a mojave desert floodplain:the role of drought[J]. Oecologia, 1997,111(1):12-18.
doi: 10.1007/s004420050202 pmid: 28307496 |
[37] | 王思宇, 龙翔, 孙自永, 等. 干旱区河岸柽柳水分利用效率(WUE)对地下水位年内波动的响应[J]. 地质科技情报, 2017,36(4):215-221. |
Wang SY, Long X, Sun ZY, et al. Response of Tamarix in water use efficiency to intra-annual water table fluctuation in an arid riparian zone[J]. Geological Science and Technology Information, 2017,36(4):215-221. | |
[38] | 张进虎. 巴丹吉林沙漠高大沙山柽柳生态水文指示及其水来源[D]. 兰州:兰州大学, 2018. |
Zhang JH. Study on the eco-hydrological indicators and water source of Tamarix laxa in the mega-dunes of the Badain Jaran desert[D]. Lanzhou:Lanzhou University, 2018. | |
[39] |
Huang X, Chen YN, Li WH, et al. Analysis of carbon flux of soil and its related factors from Tamarix spp. community in the middle and lower reaches of Tarim River[J]. Environmental Science, 2006,27(10):1934-1940.
doi: 10.1021/es00046a025 URL |
[40] | 鱼腾飞. 黑河下游荒漠河岸植物根系水力再分配及其生态水文效应[D]. 兰州:兰州大学, 2013. |
Yu TF. Hydraulic redistribution of roots and it’s ecohydrologic effects for desert riparian plants on the lower Heihe River[D]. Lanzhou:Lanzhou University, 2013. | |
[41] | 袁国富, 张佩, 薛莎莎, 等. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报, 2012,36(10):1033-1042. |
Yuan GF, Zhang P, Xue SS, et al. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes[J]. Chinese Journal of Plant Ecology, 2012,36(10):1033-1042.
doi: 10.3724/SP.J.1258.2012.01033 URL |
|
[42] |
Nippert JB, Butler JJ, Kluitenberg GJ, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia, 2010,162(2):283-292.
doi: 10.1007/s00442-009-1455-1 pmid: 19756759 |
[43] |
许皓, 李彦, 谢静霞, 等. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响[J]. 植物生态学报, 2010,34(4):375-386.
doi: 10.3773/j.issn.1005-264x.2010.04.003 |
Xu H, Li Y, Xie JX, et al. Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix[J]. Chinese Journal of Plant Ecology, 2010,34(4):375-386. | |
[44] | 何广志. 极端干旱区柽柳根系构型与水分利用机制研究[D]. 乌鲁木齐:新疆农业大学, 2016. |
He GZ. Root architecture and water use mechanism of Tamarix in the extreme arid regions[D]. Urumqi:Xinjiang Agricultural University, 2016. | |
[45] |
Imada S, Matsuo N, Acharya K, et al. Effects of salinity on fine root distribution and whole plant biomass of Tamarix ramosissima cuttings[J]. Journal of Arid Environments, 2015,114(114):84-90.
doi: 10.1016/j.jaridenv.2014.11.011 URL |
[46] | 宋香静. 黄河三角洲湿地不同盐分条件对柽柳根系的影响[D]. 北京:中国林业科学研究院, 2017. |
Song XJ. Effects of salt conditions on the roots of Tamarix chinensis in the Yellow River Delta wetland[D]. Beijing:Chinese Academy of Forestry, 2017. | |
[47] | 何广志, 陈亚宁, 陈亚鹏, 等. 柽柳根系构型对干旱的适应策略[J]. 北京师范大学学报:自然科学版, 2016,52(3):277-282. |
He GZ, Chen YN, Chen YP, et al. Adaptive strategy of Tamarix SPP root architecture in arid environment[J]. Journal of Beijing Normal University:Natural Science, 2016,52(3):277-282. | |
[48] |
Prieto I, Armas C, Pugnaire FI. Water release through plant roots:new insights into its consequences at the plant and ecosystem level[J]. New Phytologist, 2012,193(4):830-841.
doi: 10.1111/nph.2012.193.issue-4 URL |
[49] | 庞有祝. 黄土高原农林复合系统地下互作机理及管理[D]. 北京:北京林业大学, 2006. |
Pang YZ. Underground interaction mechanism and management of agroforestry systems in the loess plateau[D]. Beijing:Beijing Forestry University, 2006. | |
[50] | 何明珠. 荒漠植物枝系构件及其持水力研究[D]. 兰州:甘肃农业大学, 2004. |
He MZ. Branching module and water-retaining capability of desert plants[D]. Lanzhou:Gansu Agricultural University, 2004. | |
[51] |
Bosabalidis AM, Thomson WW. Light microscopical studies on salt gland development in Tamarix aphylla L.[J]. Annals of Botany, 1984,54(2):169-174.
doi: 10.1093/oxfordjournals.aob.a086780 URL |
[52] | Somaru R, Naidoo Y, Naidoo G. Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis(Stapf)(Poaceae)[J]. Flora(Jena), 2002,197(1):67-75. |
[53] | Bosabalidis AM. Wall protuberance formation and function in secreting salt glands of Tamarix aphylla L.[J]. Acta Botanica Croatica, 2010,69(2):229-235. |
[54] |
Thomson WW, Liu LL. Ultrastructural features of the salt gland of Tamarix aphylla L.[J]. Planta, 1967,73(2):201-220.
doi: 10.1007/BF00387033 pmid: 24554409 |
[55] | Thomson BW, Berry WL, Liu LL. Localization and secretion of salt by the salt glands of Tamarix aphylla[J]. Proceedings of the National Academy of Sciences of the United States of America, 1969,63(2):310-317. |
[56] | Maheshi D, Larkin JC. Making plants break a sweat:the structure, function, and evolution of plant salt glands[J]. Frontiers in Plant Science, 2017,8:406. |
[57] |
Ma HY, Tian CY, Feng G, et al. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively[J]. Science China Life Sciences, 2011,54(3):282-289.
doi: 10.1007/s11427-011-4145-2 URL |
[58] | 袁芳, 冷冰莹, 王宝山. 植物盐腺泌盐研究进展[J]. 植物生理学报, 2015,51(10):1531-1537. |
Yuan F, Leng BY, Wang BS. Research progress in salt secretion of salt glands in plants[J]. Plant Physiology Journal, 2015,51(10):1531-1537. | |
[59] | Bosabalidis AM. A morphplogical approach to the question of salt gland lifetime in leaves of Tamarix aphylia L.[J]. Israel Journal of Botany, 1992,41:115-121. |
[60] | Bosabalidis AM. Programmed cell death in salt glands of Tamarix aphylla L. :an electron microscope analysis[J]. Central European Journal of Biology, 2012,7(5):927-930. |
[61] | 潘婷婷. 刚毛柽柳Na+积累及泌盐功能研究[D]. 乌鲁木齐:新疆农业大学, 2011. |
Pan TT. Study on Na+ accumulation and salt secretion of Tamarix hispida[D]. Urumqi:Xinjiang Agricultural University, 2011. | |
[62] | Pan TT, Li WH, Chen YP. Na+ distribution and secretion characters from Tamarix hispida under salt stress[J]. Advances in Intelligent & Soft Computing, 2012,158:45-52. |
[63] | 陈阳, 王贺, 张福锁, 等. 新疆荒漠盐碱生境柽柳盐分分泌特点及其影响因子[J]. 生态学报, 2010,30(2):511-518. |
Chen Y, Wang H, Zhang FS, et al. The characteristic of salt excretion and its affeccted factor on Tamarix ramossissima Ledeb under desert saline-alkali habitat in Xinjiang province[J]. Acta Ecologica Sinica, 2010,30(2):511-518. | |
[64] | 颜鑫. 柽柳属植物盐腺进化的相关研究[D]. 济南:山东师范大学, 2015. |
Yan X. Primary study on the evolution of salt glands of different Tamarix species[D]. Ji’nan:Shandong Normal University, 2015. | |
[65] | Shimony BC, Fahn A. Light and electron-microscopical studies on the structure of salt glands of Tamarix aphylla L.[J]. Botanical Journal of the Linnean Society, 1968,60(383):283-288. |
[66] |
Thomson WW, Platt-Aloia K. The ultrastructure of the plasmodesmata of the salt glands of Tamarix as revealed by transmission and freeze-fracture electron microscopy[J]. Protoplasma, 1985,125(1):13-23.
doi: 10.1007/BF01297346 URL |
[67] | 孟祥喜. 密枝类型柽柳耐盐性研究[D]. 秦皇岛:河北科技师范学院, 2015. |
Meng XX. Salt tolerance of the dense branches Tamarix[D]. Qinhuangdao:Hebei Normal University of Science and Technology, 2015. | |
[68] | 成铁龙, 李焕勇, 武海雯, 等. 盐胁迫下4种耐盐植物渗透调节物质积累的比较[J]. 林业科学研究, 2015,28(6):826-832. |
Cheng YL, Li HY, Wu HW, et al. Comparison on osmotica accumulation of different salt-tolerant plants under salt stress[J]. Forest Research, 2015,28(6):826-832. | |
[69] |
Pan TT, Li WH, Chen YP. The Influence of salt stress on the accumulation of Na+ and K+ in Tamarix hispida[J]. Procedia Environmental Sciences, 2011,10:1445-1451.
doi: 10.1016/j.proenv.2011.09.231 URL |
[70] |
Wang SL, Cao WX, Wang XJ, et al. Distribution of soil mmoisture and salt of Tamarix ramosissima plantation in desert saline-alkali land of Hexi Corridor Region, China[J]. Chinese Journal of Applied Ecology, 2019,30(8):2531-2540.
doi: 10.13287/j.1001-9332.201908.002 pmid: 31418175 |
[71] | 张立华, 陈沛海, 李健, 等. 黄河三角洲柽柳植株周围土壤盐分离子的分布[J]. 生态学报, 2016,36(18):5741-5749. |
Zhang LH, Chen PH, Li J, et al. Distribution of soils salt ions around Tamarix chinensis individuals in the Yellow River Delta[J]. Acta Ecologica Sinica, 2016,36(18):5741-5749. | |
[72] | Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant, Cell & Environment, 2017,40(1):4-10. |
[73] |
Xu SJ, An LZ, Feng HY, et al. The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment[J]. Journal of Arid Environments, 2002,51(3):437-447.
doi: 10.1006/jare.2001.0949 URL |
[74] | Li W, Khan MA, Zhang X, et al. Rooting and shoot growth of stem cuttings of saltcedar(Tamarix chinensis Lour)under salt stress[J]. Pakistan Journal of Botany, 2010,42(6):4133-4142. |
[75] | 杨升. 滨海耐盐树种筛选及评价标准研究[D]. 北京:中国林业科学研究院, 2010. |
Yang S. Study on selection and evaluation criteria of salinity tolerance tree species in coastal region[D]. Beijing:Chinese Academy of Forestry, 2010. | |
[76] | 朱金方, 陆兆华, 夏江宝, 等. 盐旱交叉胁迫对柽柳幼苗渗透调节物质含量的影响[J]. 西北植物学报, 2013,33(2):149-155. |
Zhu JF, Lu ZH, Xia JB. Changes of osmotic adjusting substances in leaves of Tamarix chinensis seedlings under salt and drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(2):149-155. | |
[77] | 张紫涵. 不同品系密枝类型柽柳的抗寒性及耐盐性研究[D]. 秦皇岛:河北科技师范学院, 2018. |
Zhang ZH. The cold tolerance and salt tolerance of different strain of dense branches Tamarix[D]. Qinhuangdao:Hebei Normal University of Science and Technology, 2018. | |
[78] |
Wang YC, Qu GZ, Li HY, et al. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii[J]. Molecular Biology Reports, 2010,37(2):1119-1124.
doi: 10.1007/s11033-009-9884-9 URL |
[79] | 鲁艳, 雷加强, 曾凡江, 等. NaCl处理对多枝柽柳(Tamarix ramosissima)生长及生理的影响[J]. 中国沙漠, 2014,34(6):1509-1515. |
Lu Y, Lei JQ, Zeng FJ, et al. Effects of NaCl treatments on growth and eco-physiological characteristics of Tamarix ramosissima[J]. Journal of Desert Research, 2014,34(6):1509-1515. | |
[80] | Liu JH, Xia JB, Fang YM, et al. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings[J]. The Scientific World Journal, 2014: 765840. |
[81] | 郭楠楠, 陈学林, 张继, 等. 柽柳组培苗抗氧化酶及渗透调节物质对NaCl胁迫的响应[J]. 西北植物学报, 2015,35(8):1620-1625. |
Guo NN, Chen XL, Zhang J, et al. Changes in antioxidase activity and osmotic adjusting substance of Tamarix chinensis seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015,35(8):1620-1625. | |
[82] | 司剑华, 卢素锦. 低温胁迫对5种柽柳抗寒性生理指标的影响[J]. 中南林业科技大学学报, 2010,30(8):78-81. |
Si JH, Lu SJ. Effects of low temperature stresson cold-resistance physiological indexes of five Tamarix L.[J]. Journal of Central South University of Forestry & Technology, 2010,30(8):78-81. | |
[83] | 周智彬, 徐新文, 杨兰英. 三种固沙植物对高温胁迫的生理响应及其抗热性研究[J]. 干旱区地理, 2005,28(6):824-830. |
Zhou ZB, Xu XW, Yang LY. Physiological response and high-temperature resistance of three species of psammophytes under high-temperature stress[J]. Arid Land Geography, 2005,28(6):824-830. | |
[84] | 王旭航. 额济纳多枝柽柳体内抗氧化酶和植物多酚含量的生态意义研究[D]. 北京:北京林业大学, 2007. |
Wang XH. A study on ecological significance of antioxidant enzymes and polyphenol contents in Tamarix rasosissima in Ejina[D]. Beijing:Beijing Forestry University, 2007. | |
[85] | 古丽美克热依·吐尼亚孜. 柽柳黄酮的提取纯化、测定方法及生物活性研究[D]. 乌鲁木齐:新疆师范大学, 2017. |
Tuniyazi GLMKRY. Study on extraction, purification, determination method, biological activities of flavonoids from Tamarix hohenackeri[D]. Urumqi:Xinjiang Normal University, 2017. | |
[86] | Saidana D. The antioxidant and free-radical scavenging activities of Tamarix boveana and Suaeda fruticosa fractions and related active compound[J]. European Scientific Journal, 2014,10(18):202-219. |
[87] | 孟阳阳, 刘冰, 刘婵. 水盐梯度下湿地柽柳光合响应特征和水分利用效率[J]. 中国沙漠, 2018,38(3):127-136. |
Meng YY, Liu B, Liu C. Photosynthetic response characteristics and water use efficiency of Tamarix chinensis under water and salt gradients in wetlands[J]. Journal of Desert Research, 2018,38(3):127-136. | |
[88] | 王珊珊, 陈曦, 王权, 等. 新疆古尔班通古特沙漠南缘多枝柽柳光合作用及水分利用的生态适应性[J]. 生态学报, 2011,31(11):3082-3089. |
Wang SS, Chen X, Wang Q, et al. Ecologicaladaptability of photosynjournal and water use for Tamarix ramosissima in the southern periphery of Gurbantunggut desert, Xinjiang[J]. Acta Ecologica Sinica, 2011,31(11):3082-3089. | |
[89] | 李文兵. 塔里木河下游荒漠植物柽柳的光合与水分生理特性研究[D]. 乌鲁木齐:新疆农业大学, 2007. |
Li WB. The research of photosynthetic and water physiological characteristics about desert plants Tamarix L. in the lower reaches of Tarim River[D]. Urumqi:Xinjiang Agricultural University, 2007. | |
[90] |
Xia JB, Zhao ZG, Sun JK, et al. Response of stem sap flow and leaf photosynjournal in Tamarix chinensis to soil moisture in the Yellow River Delta, China[J]. Photosynthetica, 2017,55(2):368-377.
doi: 10.1007/s11099-016-0651-6 URL |
[91] | Xia JB, Tian JY, Zhang GC, et al. Photosynthetic and physiological characteristics of three shrubs species in shell islands of Yellow River Delta[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009,29(7):1452-1459. |
[92] | Garcia JDS, Dalmolin AC, Costa Franca MG, et al. Different salt concentrations induce alterations both in photosynthetic parameters and salt gland activity in leaves of the mangrove Avicennia schaueriana[J]. Ecotoxicology & Environmental Safety, 2017,141:70-74. |
[93] |
Kong QX, Xia JB, Zhao ZG, et al. Effects of groundwater salinity on the characteristics of leaf photosynjournal and stem sap flow in Tamarix chinensis[J]. Chinese Journal of Plant Ecology, 2016,40(12):1298-1309.
doi: 10.17521/cjpe.2016.0012 URL |
[94] | Xia JB, Zhao XM, Ren JY, et al. Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions[J]. Environmental & Experimental Botany, 2017,138:173-183. |
[95] | 王伟华, 张希明, 闫海龙, 等. 盐处理对多枝柽柳光合作用和渗调物质的影响[J]. 干旱区研究, 2009,26(4):561-568. |
Wang WH, Zhang XM, Yan HL, et al. Effects of salt stress on photosynjournal and osmoregulation substances of Tamarix ramosissima Ledeb[J]. Arid Zone Research, 2009,26(4):561-568.
doi: 10.3724/SP.J.1148.2009.00561 URL |
|
[96] |
Carter JM, Nippert JB. Physiological responses of Tamarix ramosissima to extreme NaCl concentrations[J]. American Journal of Plant Sciences, 2011,2(6):808-815.
doi: 10.4236/ajps.2011.26095 URL |
[97] | 张艳敏. 植物逆境应答的分子机制及转基因研究[J]. 河北农业科学, 2003,7(4):33-39. |
Zhang YM. Molecular mechanism of plant stress response and transgene research[J]. Journal of Hebei Agricultural Sciences, 2003,7(4):33-39. | |
[98] | Zhang GN, He T, Wang XR, et al. Progress of gene expression and gene engineering of salt-tolerance in plant[J]. Journal of Wuhan Botanical Research, 2005,23(2):188-195. |
[99] | 董玉芝. 渗透胁迫下白花柽柳SSH文库构建及质膜水孔蛋白基因克隆[D]. 哈尔滨:东北林业大学, 2006. |
Dong YZ. Construction of SSH cDNA libraries of Tamarix alibiflonum under osmotic stress and cloning of plasma aquaporin gene[D]. Harbin:Northeast Forestry University, 2006. | |
[100] | 聂显光. 柽柳ThbHLH1基因调控抗逆响应的分子机理研究[D]. 哈尔滨:东北林业大学, 2014. |
Nie XG. Functional characterization of the abiotic stress response mechanisms of ThbHLH1 transcript factor from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2014. | |
[101] |
Qin LP, Wang LQ, Guo Y, et al. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance[J]. Plant Science, 2017,265:154-166.
doi: 10.1016/j.plantsci.2017.10.006 URL |
[102] |
Wang YC, Gao CQ, Liang YN, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants[J]. Journal of Plant Physiology, 2010,167(3):222-230.
doi: 10.1016/j.jplph.2009.09.008 URL |
[103] |
Zheng L, Liu GF, Meng XN, et al. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes[J]. Plant Molecular Biology, 2013,82(4/5):303-320.
doi: 10.1007/s11103-013-0063-y URL |
[104] |
Zhang TQ, Zhao YL, Wang YC, et al. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida[J]. Frontiers in Plant Science, 2018,9:1303.
doi: 10.3389/fpls.2018.01303 URL |
[105] |
Wang YC, Jiang J, Zhao X, et al. A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco[J]. Plant Science, 2006,171(6):655-662.
doi: 10.1016/j.plantsci.2006.06.011 URL |
[106] |
Zhao X, Zhan LP, Zou XZ. Improvement of cold tolerance of the half-high bush northland blueberry by transformation with the LEA gene from Tamarix androssowii[J]. Plant Growth Regulation, 2011,63(1):13-22.
doi: 10.1007/s10725-010-9507-4 URL |
[107] | 唐绯绯, 赵玉琳, 王培龙, 等. 刚毛柽柳ThP5CR基因的克隆及抗逆功能分析[J]. 林业科学, 2017,53(7):1-9. |
Tang FF, Zhao YL, Wang PL, et al. Cloning and stress tolerance analysis of ThP5CR from Tamarix hispida[J]. Scientia Silvae Sinicae, 2017,53(7):1-9. | |
[108] | 张春蕊. 柽柳ThTIP基因抗逆功能研究及上游调控因子的鉴定[D]. 哈尔滨:东北林业大学, 2017. |
Zhang CR. Functional charcaterization of the abiotic stress and identification of up-stream regulation of ThTIP from Tamarix hispida[D]. Harbin:Northeast Forestry University, 2017. | |
[109] | 杨桂燕, 郭宇聪, 王玉成, 等. 柽柳谷胱甘肽转移酶基因(ThGSTZ1)转入酵母的抗逆能力分析[J]. 安徽农业科学, 2013,41(28):11272-11274. |
Yang GY, Guo YC, Wang YC, et al. Stress tolerance of a glutathione S-transferase gene from Tamarix hispida(ThGSTZ1)in Saccharomyces cerevisiae[J]. Journal of Anhui Agricultural Sciences, 2013,41(28):11272-11274. |
[1] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[2] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[3] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[4] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[5] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[6] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[7] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[8] | 马秋雨, 袁芳. 植物盐腺泌盐及发育研究进展[J]. 生物技术通报, 2023, 39(11): 74-85. |
[9] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[10] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[11] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[12] | 刘佳欣, 张会龙, 邹荣松, 杨秀艳, 朱建峰, 张华新. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展[J]. 生物技术通报, 2023, 39(1): 59-72. |
[13] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[14] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[15] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||