生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 132-140.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0210
关怡1(), 李新1, 王定一2, 杜茜3, 张龙斌1, 叶秀云1()
收稿日期:
2021-02-24
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
关怡,女,副教授,研究方向:应用微生物;E-mail: 基金资助:
GUAN Yi1(), LI Xin1, WANG Ding-yi2, DU Xi3, ZHANG Long-bin1, YE Xiu-yun1()
Received:
2021-02-24
Published:
2022-02-26
Online:
2022-03-09
摘要:
为阐明BbRho5对球孢白僵菌生防潜能的作用,构建了Bbrho5单基因敲除菌株ΔBbrho5,以野生型菌株WT作为对照,在不同培养基上测定菌落生长速率,并测定了菌株对多菌灵胁迫耐受性及对大蜡螟幼虫体壁侵染能力。进一步获取和分析了ΔBbrho5和WT细胞内基因转录组数据。结果表明,BbRho5蛋白功能缺陷显著抑制球孢白僵菌菌丝生长速率,同时微弱影响其多菌灵胁迫抗逆性及生防能力。相较于WT,ΔBbrho5中具有770个差异表达基因(DEGs),其中上调基因395个,下调基因375个。GO分析显示,ΔBbrho5 VS WT中DEGs主要富集于氧化还原酶活力(oxidoreductase activity)和单加氧酶活力(monooxygenase activity)功能。KEGG通路富集结果显示,DEGs主要富集于氮代谢及多种氨基酸代谢通路。在氮代谢通路中富集到7个功能基因,其中有5个上调,2个下调,说明敲除菌株可能采用增强氮源利用及谷氨酸合成以应对Bbrho5缺陷引起的生长迟缓。以上研究结果揭示了球孢白僵菌中小GTP酶BbRho5对球孢白僵菌生长速率具有重要影响,且氮代谢和氨基酸代谢可能为其重要的响应代谢通路。
关怡, 李新, 王定一, 杜茜, 张龙斌, 叶秀云. BbRho5对球孢白僵菌生长速率的作用研究[J]. 生物技术通报, 2022, 38(2): 132-140.
GUAN Yi, LI Xin, WANG Ding-yi, DU Xi, ZHANG Long-bin, YE Xiu-yun. Functional Study of BbRho5 on the Growth Rate of Beauveria bassiana[J]. Biotechnology Bulletin, 2022, 38(2): 132-140.
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
rho5-up-F | AAAAAGGAATTCCGTCGCCAACATCTCCATC |
rho5-up-R | AAAAACGGGATCCGTCGTCGGTGGTGGTGAG |
rho5-dn-F | AACGTCGACCCATGGCTCGAGTGGTATCCGCC- CCCTTTCT |
rho5-dn-R | CGTTAACACTAGTCAGATCCGGTTAGGGAGGC- TTCGTA |
rho5-comp-F | ATCCGTCGACCTGCAGCCACGTCGCCAACATCT- CCAT |
rho5-comp -R | ACACTAGTCAGATCTTCTAGCAGTGGTGCTCAG- CAGACAA |
表1 Bbrho5单基因缺失及回补菌株构建引物
Table 1 Primers for constructing single gene deletion mu-tant or complementary strains of Bbrho5
引物名称 Primer | 序列 Sequence(5'-3') |
---|---|
rho5-up-F | AAAAAGGAATTCCGTCGCCAACATCTCCATC |
rho5-up-R | AAAAACGGGATCCGTCGTCGGTGGTGGTGAG |
rho5-dn-F | AACGTCGACCCATGGCTCGAGTGGTATCCGCC- CCCTTTCT |
rho5-dn-R | CGTTAACACTAGTCAGATCCGGTTAGGGAGGC- TTCGTA |
rho5-comp-F | ATCCGTCGACCTGCAGCCACGTCGCCAACATCT- CCAT |
rho5-comp -R | ACACTAGTCAGATCTTCTAGCAGTGGTGCTCAG- CAGACAA |
图1 Bbrho5敲除及回补菌落PCR鉴定 1:回补菌株;2:野生菌株;3:敲除菌株;M:Marker
Fig. 1 PCR verification for Bbrho5 deletion or compleme-ntary 1:Complementary strain. 2:WT strain. 3:Gene deletion strain. M:Marker
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
WT-1 | 54944640 | 8177521548 | 0.023 | 98.86 | 96.11 | 55.56 |
WT-2 | 54680452 | 8142825538 | 0.0233 | 98.76 | 95.82 | 55.61 |
WT-3 | 53371986 | 7953327629 | 0.0234 | 98.73 | 95.75 | 55.71 |
ΔBbrho5-1 | 50282602 | 7496483802 | 0.0233 | 98.74 | 95.81 | 56.01 |
ΔBbrho5-2 | 49584208 | 7395969389 | 0.0234 | 98.75 | 95.77 | 55.71 |
ΔBbrho5-3 | 52574486 | 7847183298 | 0.0232 | 98.82 | 96 | 55.94 |
表2 WT和ΔBbrho5的转录组数据质量统计
Table 2 Quality statistics of the WT and ΔBbrho5 transcriptome data
Sample | Clean reads | Clean bases | Error rate/% | Q20/% | Q30/% | GC content/% |
---|---|---|---|---|---|---|
WT-1 | 54944640 | 8177521548 | 0.023 | 98.86 | 96.11 | 55.56 |
WT-2 | 54680452 | 8142825538 | 0.0233 | 98.76 | 95.82 | 55.61 |
WT-3 | 53371986 | 7953327629 | 0.0234 | 98.73 | 95.75 | 55.71 |
ΔBbrho5-1 | 50282602 | 7496483802 | 0.0233 | 98.74 | 95.81 | 56.01 |
ΔBbrho5-2 | 49584208 | 7395969389 | 0.0234 | 98.75 | 95.77 | 55.71 |
ΔBbrho5-3 | 52574486 | 7847183298 | 0.0232 | 98.82 | 96 | 55.94 |
Sample | Total reads | Total mapped | Multiple mapped | Uniquely mapped |
---|---|---|---|---|
WT-1 | 54944640 | 52334433(95.25%) | 242381(0.44%) | 52092052(94.81%) |
WT-2 | 54680452 | 52109660(95.3%) | 225669(0.41%) | 51883991(94.89%) |
WT-3 | 53371986 | 50353743(94.34%) | 210188(0.39%) | 50143555(93.95%) |
ΔBbrho5-1 | 50282602 | 47863412(95.19%) | 202423(0.4%) | 47660989(94.79%) |
ΔBbrho5-2 | 49584208 | 47574991(95.95%) | 239083(0.48%) | 47335908(95.47%) |
ΔBbrho5-3 | 52574486 | 50041097(95.18%) | 302786(0.58%) | 49738311(94.61%) |
表3 WT及ΔBbrho5序列比对分析结果统计
Table 3 Alignment and analysis of WT andΔBbrho5 sequence
Sample | Total reads | Total mapped | Multiple mapped | Uniquely mapped |
---|---|---|---|---|
WT-1 | 54944640 | 52334433(95.25%) | 242381(0.44%) | 52092052(94.81%) |
WT-2 | 54680452 | 52109660(95.3%) | 225669(0.41%) | 51883991(94.89%) |
WT-3 | 53371986 | 50353743(94.34%) | 210188(0.39%) | 50143555(93.95%) |
ΔBbrho5-1 | 50282602 | 47863412(95.19%) | 202423(0.4%) | 47660989(94.79%) |
ΔBbrho5-2 | 49584208 | 47574991(95.95%) | 239083(0.48%) | 47335908(95.47%) |
ΔBbrho5-3 | 52574486 | 50041097(95.18%) | 302786(0.58%) | 49738311(94.61%) |
[1] |
Wang CS, Feng MG. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests[J]. Biol Control, 2014, 68:129-135.
doi: 10.1016/j.biocontrol.2013.06.017 URL |
[2] | 田佳, 汝冰璐, 等. 一株对桃蚜有高致病性球孢白僵菌的分离、筛选与鉴定[J]. 植物保护学报, 2018, 45(3):606-613. |
Tian J, Ru BL, et al. Separation, screening and identification of one isolate of Beauveria bassiana with high pathogenicity to Myzus persicae[J]. J Plant Prot, 2018, 45(3):606-613. | |
[3] | 姚红伊, 颜小锋, 吴希美. Rac小G蛋白与中性粒细胞趋化研究进展[J]. 中国药理学通报, 2010, 26(11):1407-1409. |
Yao HY, Yan XF, Wu XM. Progress in the study between Rac GTPase and neutrophil chemotaxis[J]. Chin Pharmacol Bull, 2010, 26(11):1407-1409. | |
[4] |
Stankiewicz TR, Linseman DA. Rho family GTPases:key players in neuronal development, neuronal survival, and neurodegeneration[J]. Front Cell Neurosci, 2014, 8:314.
doi: 10.3389/fncel.2014.00314 pmid: 25339865 |
[5] |
Perez P, Cansado J. Cell integrity signaling and response to stress in fission yeast[J]. Curr Protein Pept Sci, 2010, 11(8):680-692.
doi: 10.2174/138920310794557718 URL |
[6] |
Kwon MJ, Arentshorst M, Roos ED, et al. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi[J]. Mol Microbiol, 2011, 79(5):1151-1167.
doi: 10.1111/j.1365-2958.2010.07524.x pmid: 21205013 |
[7] |
Viana RA, Pinar M, Soto T, et al. Negative functional interaction between cell integrity MAPK pathway and Rho1 GTPase in fission yeast[J]. Genetics, 2013, 195(2):421-432.
doi: 10.1534/genetics.113.154807 pmid: 23934882 |
[8] |
An B, Li BQ, Qin GZ, et al. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea[J]. Fungal Genet Biol, 2015, 75:46-55.
doi: 10.1016/j.fgb.2015.01.007 URL |
[9] |
Nakano K, Imai J, Arai R, et al. The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast[J]. J Cell Sci, 2002, 115(pt 23):4629-4639.
doi: 10.1242/jcs.00150 URL |
[10] |
Gong T, Liao Y, et al. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast:requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2[J]. Eukaryot Cell, 2013, 12(2):368-377.
doi: 10.1128/EC.00277-12 URL |
[11] |
Rasmussen CG, Glass NL. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa[J]. Eukaryot Cell, 2005, 4(11):1913-1925.
pmid: 16278458 |
[12] |
Si H, Justa-Schuch D, Seiler S, et al. Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans[J]. Genetics, 2010, 185(1):165-176.
doi: 10.1534/genetics.110.114165 URL |
[13] | Tay YD, Leda M, Goryachev AB, et al. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis[J]. J Cell Sci, 2018, 131(14):jcs216580. |
[14] |
Mahlert M, Leveleki L, Hlubek A, et al. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis[J]. Mol Microbiol, 2006, 59(2):567-578.
doi: 10.1111/j.1365-2958.2005.04952.x URL |
[15] |
Kayano Y, Tanaka A, Akano F, et al. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloë festucae[J]. Fungal Genet Biol, 2013, 56:87-97.
doi: 10.1016/j.fgb.2013.05.001 pmid: 23684536 |
[16] |
Tian H, Zhou L, Guo W, et al. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae[J]. Fungal Genet Biol, 2015, 74:21-31.
doi: 10.1016/j.fgb.2014.11.003 pmid: 25475370 |
[17] |
Guan Y, Wang DY, Ying SH, et al. Miro GTPase controls mitochondrial behavior affecting stress tolerance and virulence of a fungal insect pathogen[J]. Fungal Genet Biol, 2016, 93:1-9.
doi: 10.1016/j.fgb.2016.05.005 pmid: 27241960 |
[18] | 赵圣国. 组学生物技术——系统性揭示生命活动奥秘[J]. 生物技术通报, 2021, 37(1):1. |
Zhao SG. Omics biotechnology-systematically reveal the mystery of life activities[J]. Biotechnol Bull, 2021, 37(1):1. | |
[19] |
Shao W, Cai Q, Tong SM, et al. Rei1-like protein regulates nutritional metabolism and transport required for the asexual cycle in vitro and in vivo of a fungal insect pathogen[J]. Environ Microbiol, 2019, 21(8):2772-2786.
doi: 10.1111/1462-2920.14616 pmid: 30932324 |
[20] |
Peng YJ, Ding JL, Feng MG, et al. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus[J]. Curr Genet, 2019, 65(1):283-291.
doi: 10.1007/s00294-018-0876-y URL |
[21] |
Wang DY, Tong SM, Guan Y, et al. The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of Beauveria bassiana[J]. Fungal Genet Biol, 2019, 127:1-11.
doi: 10.1016/j.fgb.2019.02.009 URL |
[22] | Zhang AX, et al. BrlA and AbaA govern virulence-required dimorphic switch, conidiation, and pathogenicity in a fungal insect pathogen[J]. mSystems, 2019, 4(4):e00140-19. |
[23] |
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.
doi: 10.1186/1471-2105-12-323 URL |
[24] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[25] |
Xie C, Mao X, Huang J, et al. KOBAS 2. 0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39(web server issue):W316-W322.
doi: 10.1093/nar/gkr483 URL |
[26] |
Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria[J]. Cell Metab, 2015, 21(2):249-262.
doi: S1550-4131(15)00009-1 pmid: 25651179 |
[27] |
Liu J, Sun HH, Ying SH, et al. Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bas- siana[J]. Fungal Genet Biol, 2018, 113:24-31.
doi: 10.1016/j.fgb.2018.01.008 URL |
[28] |
Wang JJ, Cai Q, Qiu L, et al. The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation[J]. Appl Microbiol Biotechnol, 2018, 102(3):1343-1355.
doi: 10.1007/s00253-017-8703-9 URL |
[29] |
Zhou G, Ying SH, Hu Y, et al. Roles of three HSF domain-containing proteins in mediating heat-shock protein genes and sustaining asexual cycle, stress tolerance, and virulence in Beauveria bassi-ana[J]. Front Microbiol, 2018, 9:1677.
doi: 10.3389/fmicb.2018.01677 URL |
[30] | Tong SM, Wang DY, Gao BJ, et al. The DUF1996 and WSC domain-containing protein Wsc1I Acts as a novel sensor of multiple stress cues in Beauveria bassiana[J]. Cell Microbiol, 2019, 21(12):e13100. |
[31] |
Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008, 9(9):690-701.
doi: 10.1038/nrm2476 URL |
[32] | 孙江山, 沈源, 等. 真菌中Rho GTP酶功能多样性及其研究进展[J]. 农技服务, 2016, 33(6):96. |
Sun JS, Shen Y, et al. Functional diversity and research progress of Rho GTPases in fungi[J]. Agric Technol Serv, 2016, 33(6):96. | |
[33] |
Guan Y, Wang DY, Ying SH, et al. A novel Ras GTPase(Ras3)regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana[J]. Fungal Genet Biol, 2015, 82:85-94.
doi: 10.1016/j.fgb.2015.07.002 pmid: 26162967 |
[34] | 朱静, 岳思宁, 陈琛, 等. 谷氨酸合酶在灵芝中生物学功能的研究[J]. 南京农业大学学报, 2019, 42(6):1073-1079. |
Zhu J, Yue SN, Chen C, et al. Study on the biological function of glutamate synthase in Ganoderma lucidum[J]. J Nanjing Agric Univ, 2019, 42(6):1073-1079. | |
[35] | 肖洁, 刘朱东, 彭胜男, 等. GlnA基因对刺糖多孢菌生长发育及多杀菌素合成的影响[J]. 中国生物防治学报, 2018, 34(4):625-638. |
Xiao J, Liu ZD, Peng SN, et al. The effect of glnA gene on growth development and spinosad biosynjournal in Saccharopolyspora spinosa[J]. Chin J Biol Control, 2018, 34(4):625-638. |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[5] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[9] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[10] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[11] | 郭文博, 路杨, 隋丽, 赵宇, 邹晓威, 张正坤, 李启云. 球孢白僵菌真菌病毒BbPmV-4外壳蛋白多克隆抗体制备及应用[J]. 生物技术通报, 2023, 39(10): 58-67. |
[12] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[13] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[14] | 许瑾, 李涛, 李楚琳, 朱顺妮, 王忠铭, 向文洲. 温度对真眼点藻生长、总脂及二十碳五烯酸(EPA)合成的影响[J]. 生物技术通报, 2022, 38(6): 261-271. |
[15] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||