生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 88-102.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0311
乔承彬(), 宋佳伟, 杨辉, 段凯蓉, 冉杰, 孔维儒, 冯培媛, 罗成科, 李培富, 田蕾()
收稿日期:
2024-03-31
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
田蕾,男,博士,教授,研究方向:水稻遗传育种;E-mail: tianlei2012@nxu.edu.cn作者简介:
乔承彬,男,硕士研究生,研究方向:水稻叶形遗传育种;E-mail: qiao1053811988@163.com
基金资助:
QIAO Cheng-bin(), SONG Jia-wei, YANG Hui, DUAN Kai-rong, RAN Jie, KONG Wei-ru, FENG Pei-yuan, LUO Cheng-ke, LI Pei-fu, TIAN Lei()
Received:
2024-03-31
Published:
2024-11-26
Online:
2024-12-19
摘要:
水稻叶宽是叶片形态的重要组成部分,对叶形构建和光合作用具有重要的生物学意义。水稻通过叶原基中-侧轴方向的细胞分裂和细胞扩张完成叶宽形态建成,该过程受到植物激素、细胞代谢以及相关基因表达水平的影响。TDD1、NAL7、FIB参与水稻依赖色氨酸的生长素生物合成途径;GID1、GID2、SLR1参与了GA对水稻叶宽的负调控;NAL21、NLG1、NAL9等基因对于维持细胞器稳态和细胞正常代谢至关重要。大多数水稻叶宽基因通过生长素信号转导作用于细胞分裂,CCC1则是通过调节细胞渗透势参与细胞扩张。转录因子WL1通过募集共阻遏物TOPLESS相关蛋白负调控丝氨酸蛋白酶基因NAL1的表达,进而影响生长素信号通路。发掘叶宽发育相关基因并将其应用于育种实践对于提高水稻产量具有重要意义,利用种质资源挖掘水稻叶宽基因的优异单倍型和以CRISPR/Cas9为代表的基因编辑技术为改良水稻叶宽提供了丰富的手段和途径。在利用水稻叶宽基因进行性状改良时,应当充分考虑基因多效性和基因互作效应,与生产实际相结合,避免对其他性状产生不良影响。本文从组织学特征、植物激素、分子机制及叶宽相关基因等方面综述了水稻叶宽遗传调控机制,探讨水稻叶宽改良在育种中的意义及策略,为水稻叶形分子机理研究和“理想株型”育种提供思路。
乔承彬, 宋佳伟, 杨辉, 段凯蓉, 冉杰, 孔维儒, 冯培媛, 罗成科, 李培富, 田蕾. 水稻叶宽调控机制及相关基因研究进展[J]. 生物技术通报, 2024, 40(11): 88-102.
QIAO Cheng-bin, SONG Jia-wei, YANG Hui, DUAN Kai-rong, RAN Jie, KONG Wei-ru, FENG Pei-yuan, LUO Cheng-ke, LI Pei-fu, TIAN Lei. Advances in the Mechanism of Leaf Width Regulation and Related Genes in Rice[J]. Biotechnology Bulletin, 2024, 40(11): 88-102.
基因名和ID Gene and ID | 染色体 Chromosome | 基因功能 Gene function | 生物学功能 Biological function | 亚细胞定位 Subcellular localization | 突变体表型 Mutant phenotypes | 参考文献 Reference |
---|---|---|---|---|---|---|
GID2 (LOC_Os02g36974) | 2 | 编码SCF E3泛素连接酶复合体的F-box 亚基 Encodes an F-box subunit of the SCF E3 complex | GA信号传导的正调节因子 Positive regulators of GA signaling | 细胞核 Nucleus | 宽叶、矮化 Wide leaves, dwarf | [ |
NAL1 (LOC_Os04g52479) | 4 | 编码丝氨酸蛋白酶 Encodes serine protease | 通过降解TPR2调节生长素相关基因表达 Modulate auxin-related gene expression by degradation of TPR2 | 细胞核、细胞质 Nucleus, cytoplasm | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL2 (LOC_Os11g01130) | 11 | 编码WOX3A转录激活因子 Encodes WOX3A transcriptional activator | 促进叶片横向生长和维管束发育 Promote leaf lateral growth and veins development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
NAL3 (LOC_Os12g01120) | 12 | 编码WOX3A转录激活因子 Encodes WOX3A transcriptional activator | 促进叶片横向生长和维管束发育 Promote leaf lateral growth and veins development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
NAL9 (LOC_Os03g29810) | 3 | 编码酪蛋白酶水解亚基 Encodes caseinolytic protease proteolytic subunit | 促进水稻叶绿体生物合成 Promote chloroplast biosynthesis | 叶绿体 Chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL7 (LOC_Os03g06654) | 3 | 编码黄素单加氧酶 Encodes flavin-containing monooxygenase | 参与生长素生物合成 Involved in auxin biosynthesis | 细胞质 Cytoplasm | 窄卷叶 Narrow and rolled leaves | [ |
SNFL1 (LOC_Os05g50270) | 5 | 编码GATA锌指蛋白 Encodes GATA zinc finger protein | 参与叶片表皮细胞及维管束发育 Involved in the development of leaf epidermal cells and veins | 细胞核 Nucleus | 短窄剑叶 Short and narrow flag leaves | [ |
NAAL1 (LOC_Os07g31450) | 7 | 染色质重塑因子 Chromatin-remodeling factor | 参与生长素相关基因表达 Participate in the expression of auxin-related gene | 细胞核 Nucleus | 短窄叶、矮化 Short and narrow leaves, dwarf | [ |
WL1 (LOC_Os03g57240) | 3 | 编码Cys-2/His-2型锌指蛋白 Encodes Cys-2/His-2-type zinc finger protein | 负调控NAL1 Negatively regulate NAL1 | 细胞核 Nucleus | 宽叶 Wide leaves | [ |
TAD1 (LOC_Os03g03150) | 3 | APC/C的共激活因子 Co-activator of the APC/C | 激活APC/C泛素连接酶活性 Activate APC/C E3 ubiquitin ligase activity | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
ARF19 (LOC_Os06g48950) | 6 | 生长素响应因子 Auxin response factor | 参与生长素信号传导并正调控GH3-5 Involved in auxin signaling and positively regulates GH3-5 | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
ARF11 (LOC_Os04g56850) | 4 | 生长素响应因子 Auxin response factor | 参与生长素信号传导 Involved in auxin signaling | 细胞核 Nucleus | 窄叶、矮化 Narrow leaves, dwarf | [ |
WOX3B (LOC_Os05g02730) | 5 | 编码WOX3B转录因子 Encodes WOX3B transcription factor | 参与叶片横向生长 Involved in leaf lateral growth | 细胞核 Nucleus | 窄叶或分叉叶 Narrow or forked leaf | [ |
SLL1 (LOC_Os09g23200) | 9 | 编码MYB转录因子 Encodes MYB transcription factor | 通过参与远轴端细胞发育调控水稻叶形 Regulate leaf shape by involving in leaf abaxial cell development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
DCL1 (LOC_Os03g02970) | 3 | 编码类Dicer蛋白 Encodes Dicer-like protein | 负责miRNAs的生成 Responsible for the generation of miRNAs | 细胞质 Cytoplasm | 窄叶、矮化 Narrow leaves, dwarf | [ |
AGO1a/b/c/d (LOC_Os02g45070 LOC_Os04g47870 LOC_Os02g58490 LOC_Os06g51310) | 2/4/2/6 | 编码Argonaute(AGO)蛋白 Encodes Argonaute(AGO)protein | 抑制基因表达 Inhibit gene expression | 细胞质 Cytoplasm | 窄卷叶、矮化 Narrow and rolled leaves, dwarf | [ |
miR319a/b (LOC_Os01g46984 Os01g0222001) | 1 | 微RNA microRNA | 抑制TCP转录本翻译 Inhibite translatie of TCP transcripts | 细胞核 Nucleus | 过表达株系表现为宽叶 Overexpression lines show wider leaves | [ |
HDT702 (LOC_Os01g68104) | 1 | 组蛋白去乙酰化酶 Histone deacetylase | 参与组蛋白修饰 Involved in histone modification | 细胞核 Nucleus | 窄叶、矮化 Narrow leaves, dwarf | [ |
TDD1 (LOC_Os04g38950) | 4 | 邻氨基苯甲酸合酶β亚基 Anthranilate synthase β-Subunit | 催化色氨酸生物合成的第一步反应 Catalyze the first step of the Trp biosynthesis | 叶绿体 Chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
FIB (LOC_Os01g07500) | 1 | 色氨酸氨基转移酶 Tryptophan aminotransferase | 参与生长素生物合成 Involved in auxin biosynthesis | 细胞质 Cytoplasm | 窄叶 Narrow leaves | [ |
CKX1 (LOC_Os01g09260) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 负调控叶长、叶宽及籽粒大小 Negatively regulate leaf length, leaf width and grain size | 细胞质 Cytoplasm | 长宽叶 Long and wide leaves | [ |
CKX2 (LOC_Os01g10110) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 负调控叶长、叶宽及籽粒大小 Negatively regulate leaf length, leaf width and grain size | 细胞质 Cytoplasm | 长宽叶 Long and wide leaves | [ |
CKX4 (LOC_Os01g71310) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 正调控剑叶、籽粒大小 Positively regulate flag leaf and grain size | 细胞质 Cytoplasm | 短窄叶、矮化 Short and narrow leaves, dwarf | [ |
GID1 (LOC_Os05g33730) | 5 | 赤霉素受体 GA receptor | 参与GA信号传导 Involved in GA signaling | 细胞核 Nucleus | 宽叶、矮化 Wide leaves, dwarf | [ |
SLR1 (LOC_Os03g49990) | 3 | 编码GRAS转录因子 Encodes GRAS transcription factor | 抑制GA信号传导 Inhibit GA signaling | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
GH3-5 (LOC_Os05g50890) | 5 | 茉莉酸-异亮氨酸(JA-Ile)合酶 Jasmonoyl-isoleucine(JA-Ile)synthase | 催化茉莉酸-异亮氨酸复合物的合成 Catalyse JA-Ile synthesis | 内质网 Endoplasmic reticulum | 过表达株系表现为窄叶、矮化 Overexpression lines show narrow leaves, dwarf | [ |
CSLD4 (LOC_Os12g36890) | 12 | 类纤维素合酶 Cellulose synthase-like | 参与细胞壁形成 Involved in cell wall synthesis | 高尔基体 Golgi | 窄卷叶、矮化 Narrow and rolled leaves, dwarf | [ |
NSL2 (LOC_Os06g14620) | 6 | 编码核糖核苷酸还原酶小亚基 Encodes small subunits of ribonucleotide reductase | 参与dNTPs合成 Involved in dNTPs synthesis | 细胞核、细胞质 Nucleus, cytoplasm | 窄叶 Narrow leaves | [ |
DLT (LOC_Os06g03710) | 6 | 编码GRAS转录因子 Encodes GRAS transcription factor | 通过抑制细胞周期蛋白相关基因的表达调控细胞分裂 Regulate cell division by suppressing the expression of cyclin related genes | 细胞核 Nucleus | 短宽叶 Short and wide leaves | [ |
AVB (LOC_Os03g19520) | 3 | 未知功能蛋白 Unknown function protein | 维持细胞分裂 Maintain cell division | 细胞核、细胞质 Nucleus, cytoplasm | 窄卷叶 Narrow and rolled leaves | [ |
CCC1 (LOC_Os08g23440) | 8 | 阳离子-氯离子协同转运蛋白 Cation-chloride cotransporter | 通过调控离子平衡维持细胞渗透势 Maintain cellular osmotic potential by regulating ion homeostasis | 细胞膜 Cell membrane | 窄叶 Narrow leaves | [ |
MKB3 (LOC_Os03g52320) | 3 | GRF互作因子 GRF-interacting factor | 正调控细胞增殖和细胞大小 Positively regulate cell proliferation and cell size | 细胞核 Nucleus | 短窄叶 Short and narrow leaves | [ |
NLG1 (LOC_Os03g14890) | 3 | 编码TIM23亚基 Encodes subunits of TIM23 | 维持线粒体代谢 Maintain mitochondrion metabolism | 线粒体 Mitochondrion | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL8 (LOC_Os07g15880) | 7 | 编码PHB亚基 Encodes subunits of PHB | 维持线粒体和叶绿体稳定性 Maintain mitochondrion and chloroplast stability | 线粒体、叶绿体 Mitochondrion, chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
表1 部分已克隆水稻叶宽相关基因
Table 1 Partial cloned leaf-width-related genes in rice
基因名和ID Gene and ID | 染色体 Chromosome | 基因功能 Gene function | 生物学功能 Biological function | 亚细胞定位 Subcellular localization | 突变体表型 Mutant phenotypes | 参考文献 Reference |
---|---|---|---|---|---|---|
GID2 (LOC_Os02g36974) | 2 | 编码SCF E3泛素连接酶复合体的F-box 亚基 Encodes an F-box subunit of the SCF E3 complex | GA信号传导的正调节因子 Positive regulators of GA signaling | 细胞核 Nucleus | 宽叶、矮化 Wide leaves, dwarf | [ |
NAL1 (LOC_Os04g52479) | 4 | 编码丝氨酸蛋白酶 Encodes serine protease | 通过降解TPR2调节生长素相关基因表达 Modulate auxin-related gene expression by degradation of TPR2 | 细胞核、细胞质 Nucleus, cytoplasm | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL2 (LOC_Os11g01130) | 11 | 编码WOX3A转录激活因子 Encodes WOX3A transcriptional activator | 促进叶片横向生长和维管束发育 Promote leaf lateral growth and veins development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
NAL3 (LOC_Os12g01120) | 12 | 编码WOX3A转录激活因子 Encodes WOX3A transcriptional activator | 促进叶片横向生长和维管束发育 Promote leaf lateral growth and veins development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
NAL9 (LOC_Os03g29810) | 3 | 编码酪蛋白酶水解亚基 Encodes caseinolytic protease proteolytic subunit | 促进水稻叶绿体生物合成 Promote chloroplast biosynthesis | 叶绿体 Chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL7 (LOC_Os03g06654) | 3 | 编码黄素单加氧酶 Encodes flavin-containing monooxygenase | 参与生长素生物合成 Involved in auxin biosynthesis | 细胞质 Cytoplasm | 窄卷叶 Narrow and rolled leaves | [ |
SNFL1 (LOC_Os05g50270) | 5 | 编码GATA锌指蛋白 Encodes GATA zinc finger protein | 参与叶片表皮细胞及维管束发育 Involved in the development of leaf epidermal cells and veins | 细胞核 Nucleus | 短窄剑叶 Short and narrow flag leaves | [ |
NAAL1 (LOC_Os07g31450) | 7 | 染色质重塑因子 Chromatin-remodeling factor | 参与生长素相关基因表达 Participate in the expression of auxin-related gene | 细胞核 Nucleus | 短窄叶、矮化 Short and narrow leaves, dwarf | [ |
WL1 (LOC_Os03g57240) | 3 | 编码Cys-2/His-2型锌指蛋白 Encodes Cys-2/His-2-type zinc finger protein | 负调控NAL1 Negatively regulate NAL1 | 细胞核 Nucleus | 宽叶 Wide leaves | [ |
TAD1 (LOC_Os03g03150) | 3 | APC/C的共激活因子 Co-activator of the APC/C | 激活APC/C泛素连接酶活性 Activate APC/C E3 ubiquitin ligase activity | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
ARF19 (LOC_Os06g48950) | 6 | 生长素响应因子 Auxin response factor | 参与生长素信号传导并正调控GH3-5 Involved in auxin signaling and positively regulates GH3-5 | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
ARF11 (LOC_Os04g56850) | 4 | 生长素响应因子 Auxin response factor | 参与生长素信号传导 Involved in auxin signaling | 细胞核 Nucleus | 窄叶、矮化 Narrow leaves, dwarf | [ |
WOX3B (LOC_Os05g02730) | 5 | 编码WOX3B转录因子 Encodes WOX3B transcription factor | 参与叶片横向生长 Involved in leaf lateral growth | 细胞核 Nucleus | 窄叶或分叉叶 Narrow or forked leaf | [ |
SLL1 (LOC_Os09g23200) | 9 | 编码MYB转录因子 Encodes MYB transcription factor | 通过参与远轴端细胞发育调控水稻叶形 Regulate leaf shape by involving in leaf abaxial cell development | 细胞核 Nucleus | 窄卷叶 Narrow and rolled leaves | [ |
DCL1 (LOC_Os03g02970) | 3 | 编码类Dicer蛋白 Encodes Dicer-like protein | 负责miRNAs的生成 Responsible for the generation of miRNAs | 细胞质 Cytoplasm | 窄叶、矮化 Narrow leaves, dwarf | [ |
AGO1a/b/c/d (LOC_Os02g45070 LOC_Os04g47870 LOC_Os02g58490 LOC_Os06g51310) | 2/4/2/6 | 编码Argonaute(AGO)蛋白 Encodes Argonaute(AGO)protein | 抑制基因表达 Inhibit gene expression | 细胞质 Cytoplasm | 窄卷叶、矮化 Narrow and rolled leaves, dwarf | [ |
miR319a/b (LOC_Os01g46984 Os01g0222001) | 1 | 微RNA microRNA | 抑制TCP转录本翻译 Inhibite translatie of TCP transcripts | 细胞核 Nucleus | 过表达株系表现为宽叶 Overexpression lines show wider leaves | [ |
HDT702 (LOC_Os01g68104) | 1 | 组蛋白去乙酰化酶 Histone deacetylase | 参与组蛋白修饰 Involved in histone modification | 细胞核 Nucleus | 窄叶、矮化 Narrow leaves, dwarf | [ |
TDD1 (LOC_Os04g38950) | 4 | 邻氨基苯甲酸合酶β亚基 Anthranilate synthase β-Subunit | 催化色氨酸生物合成的第一步反应 Catalyze the first step of the Trp biosynthesis | 叶绿体 Chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
FIB (LOC_Os01g07500) | 1 | 色氨酸氨基转移酶 Tryptophan aminotransferase | 参与生长素生物合成 Involved in auxin biosynthesis | 细胞质 Cytoplasm | 窄叶 Narrow leaves | [ |
CKX1 (LOC_Os01g09260) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 负调控叶长、叶宽及籽粒大小 Negatively regulate leaf length, leaf width and grain size | 细胞质 Cytoplasm | 长宽叶 Long and wide leaves | [ |
CKX2 (LOC_Os01g10110) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 负调控叶长、叶宽及籽粒大小 Negatively regulate leaf length, leaf width and grain size | 细胞质 Cytoplasm | 长宽叶 Long and wide leaves | [ |
CKX4 (LOC_Os01g71310) | 1 | 细胞分裂素氧化酶/脱氢酶 Cytokinin oxidase/dehydrogenase | 正调控剑叶、籽粒大小 Positively regulate flag leaf and grain size | 细胞质 Cytoplasm | 短窄叶、矮化 Short and narrow leaves, dwarf | [ |
GID1 (LOC_Os05g33730) | 5 | 赤霉素受体 GA receptor | 参与GA信号传导 Involved in GA signaling | 细胞核 Nucleus | 宽叶、矮化 Wide leaves, dwarf | [ |
SLR1 (LOC_Os03g49990) | 3 | 编码GRAS转录因子 Encodes GRAS transcription factor | 抑制GA信号传导 Inhibit GA signaling | 细胞核 Nucleus | 窄叶 Narrow leaves | [ |
GH3-5 (LOC_Os05g50890) | 5 | 茉莉酸-异亮氨酸(JA-Ile)合酶 Jasmonoyl-isoleucine(JA-Ile)synthase | 催化茉莉酸-异亮氨酸复合物的合成 Catalyse JA-Ile synthesis | 内质网 Endoplasmic reticulum | 过表达株系表现为窄叶、矮化 Overexpression lines show narrow leaves, dwarf | [ |
CSLD4 (LOC_Os12g36890) | 12 | 类纤维素合酶 Cellulose synthase-like | 参与细胞壁形成 Involved in cell wall synthesis | 高尔基体 Golgi | 窄卷叶、矮化 Narrow and rolled leaves, dwarf | [ |
NSL2 (LOC_Os06g14620) | 6 | 编码核糖核苷酸还原酶小亚基 Encodes small subunits of ribonucleotide reductase | 参与dNTPs合成 Involved in dNTPs synthesis | 细胞核、细胞质 Nucleus, cytoplasm | 窄叶 Narrow leaves | [ |
DLT (LOC_Os06g03710) | 6 | 编码GRAS转录因子 Encodes GRAS transcription factor | 通过抑制细胞周期蛋白相关基因的表达调控细胞分裂 Regulate cell division by suppressing the expression of cyclin related genes | 细胞核 Nucleus | 短宽叶 Short and wide leaves | [ |
AVB (LOC_Os03g19520) | 3 | 未知功能蛋白 Unknown function protein | 维持细胞分裂 Maintain cell division | 细胞核、细胞质 Nucleus, cytoplasm | 窄卷叶 Narrow and rolled leaves | [ |
CCC1 (LOC_Os08g23440) | 8 | 阳离子-氯离子协同转运蛋白 Cation-chloride cotransporter | 通过调控离子平衡维持细胞渗透势 Maintain cellular osmotic potential by regulating ion homeostasis | 细胞膜 Cell membrane | 窄叶 Narrow leaves | [ |
MKB3 (LOC_Os03g52320) | 3 | GRF互作因子 GRF-interacting factor | 正调控细胞增殖和细胞大小 Positively regulate cell proliferation and cell size | 细胞核 Nucleus | 短窄叶 Short and narrow leaves | [ |
NLG1 (LOC_Os03g14890) | 3 | 编码TIM23亚基 Encodes subunits of TIM23 | 维持线粒体代谢 Maintain mitochondrion metabolism | 线粒体 Mitochondrion | 窄叶、矮化 Narrow leaves, dwarf | [ |
NAL8 (LOC_Os07g15880) | 7 | 编码PHB亚基 Encodes subunits of PHB | 维持线粒体和叶绿体稳定性 Maintain mitochondrion and chloroplast stability | 线粒体、叶绿体 Mitochondrion, chloroplast | 窄叶、矮化 Narrow leaves, dwarf | [ |
图1 水稻叶宽调控机制示意图 红色模块代表文中提到的基因或蛋白,红色箭头表示负调控,双箭头代表多步骤。RR:核糖核苷酸还原酶;AS:邻氨基苯甲酸合酶;Trp:色氨酸;TAM:色胺;NHT:N-羟基色胺;IPA:吲哚-3-丙酮酸;PHB:抗增殖蛋白;TIM:线粒体内膜转位酶;uORF:上游开放阅读框;mORF:主开放阅读框
Fig. 1 Schematic diagram of leaf width regulatory mechanism in rice Red modules indicate genes or proteins mentioned in the article, red arrows indicate negative regulation, and double arrows indicate multiple steps. RR: Ribonucleotide reductase; AS: anthranilate synthase; Trp: tryptophan; TAM: tryptamine; NHT: N-hydroxy-tryptamine; IPA: indole-3-pyruvic acid; PHB: prohibitin; TIM: translocase of inner mitochondrial membrane; uORF: upstream open-reading frames; mORF: major ORF
[1] | Zeng DL, Tian ZX, Rao YC, et al. Rational design of high-yield and superior-quality rice[J]. Nat Plants, 2017, 3: 17031. |
[2] | Wang P, Zhou GL, Yu HH, et al. Fine mapping a major QTL for flag leaf size and yield-related traits in rice[J]. Theor Appl Genet, 2011, 123(8): 1319-1330. |
[3] | Ye WJ, Hu SK, Wu LW, et al. Fine mapping a major QTL qFCC7L for chlorophyll content in rice(Oryza sativa L.) cv. PA64s[J]. Plant Growth Regul, 2017, 81(1): 81-90. |
[4] | Tsukaya H. Leaf shape: genetic controls and environmental factors[J]. Int J Dev Biol, 2005, 49(5/6): 547-555. |
[5] | Reddy GV. Live-imaging stem-cell homeostasis in the Arabidopsis shoot apex[J]. Curr Opin Plant Biol, 2008, 11(1): 88-93. |
[6] | Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development[J]. Mol Plant, 2011, 4(4): 616-625. |
[7] | Gonzalez N, Vanhaeren H, Inzé D. Leaf size control: complex coordination of cell division and expansion[J]. Trends Plant Sci, 2012, 17(6): 332-340. |
[8] | Miya M, Yoshikawa T, Sato Y, et al. Genome-wide analysis of spatiotemporal expression patterns during rice leaf development[J]. BMC Genomics, 2021, 22(1): 169. |
[9] | Manuela D, Xu ML. Patterning a leaf by establishing polarities[J]. Front Plant Sci, 2020, 11: 568730. |
[10] | Nakata M, Matsumoto N, Tsugeki R, et al. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis[J]. Plant Cell, 2012, 24(2): 519-535. |
[11] | Nardmann J, Ji JB, Werr W, et al. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems[J]. Development, 2004, 131(12): 2827-2839. |
[12] | Vandenbussche M, Horstman A, Zethof J, et al. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis[J]. Plant Cell, 2009, 21(8): 2269-2283. |
[13] | Tadege M, Lin H, Bedair M, et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris[J]. Plant Cell, 2011, 23(6): 2125-2142. |
[14] | Zhuang LL, Ambrose M, Rameau C, et al. LATHYROIDES, encoding a WUSCHEL-related homeobox 1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea(Pisum sativum L.)[J]. Mol Plant, 2012, 5(6): 1333-1345. |
[15] | Wang H, Niu HH, Li C, et al. WUSCHEL-related homeobox1(WOX1)regulates vein patterning and leaf size in Cucumis sativus[J]. Hortic Res, 2020, 7(1): 182. |
[16] | Honda E, Yew CL, Yoshikawa T, et al. LEAF LATERAL SYMME-TRY1, a member of the WUSCHEL-RELATED HOMEOBOX3 gene family, regulates lateral organ development differentially from other paralogs, NARROW LEAF2 and NARROW LEAF3 in rice[J]. Plant Cell Physiol, 2018, 59(2): 376-391. |
[17] | Cho SH, Yoo SC, Zhang HT, et al. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A(OsWOX3A)and function in leaf, spikelet, tiller and lateral root development[J]. New Phytol, 2013, 198(4): 1071-1084. |
[18] | Ishiwata A, Ozawa M, Nagasaki H, et al. Two WUSCHEL-related homeobox genes, narrow leaf2 and narrow leaf3, control leaf width in rice[J]. Plant Cell Physiol, 2013, 54(5): 779-792. |
[19] | Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant[J]. Science, 2003, 299(5614): 1896-1898. |
[20] | Li WJ, Yan JJ, Zhang Y, et al. Serine protease NAL1 exerts pleiotropic functions through degradation of TOPLESS-related corepressor in rice[J]. Nat plants, 2023, 9(7): 1130-1142. |
[21] | Qi J, Qian Q, Bu QY, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport[J]. Plant Physiol, 2008, 147(4): 1947-1959. |
[22] | Dong H, Fei GL, Wu CY, et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants[J]. Plant physiol, 2013, 162(4): 1867-1880. |
[23] | Li W, Wu C, Hu GC, et al. Characterization and fine mapping of a novel rice narrow leaf mutant nal9[J]. J Int Plant Biol, 2013, 55(11): 1016-1025. |
[24] | Woo YM, Park HJ, Su'udi M, et al. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio[J]. Plant Mol Biol, 2007, 65(1/2): 125-136. |
[25] | Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Mol Genet Genomics, 2008, 279(5): 499-507. |
[26] | He PL, Wang XW, Zhang XB, et al. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice(Oryza sativa)[J]. BMC Plant Biol, 2018, 18(1): 273. |
[27] | Ma XD, Ma J, Zhai HH, et al. CHR729 is a CHD3 protein that controls seedling development in rice[J]. PLoS One, 2015, 10(9): e0138934. |
[28] | Xu J, Wang L, Zhou MY, et al. Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice[J]. Plant Growth Regul, 2017, 82(1): 175-186. |
[29] | You J, Xiao WW, Zhou Y, et al. The APC/CTAD1-WIDE LEAF 1-NARROW LEAF 1 pathway controls leaf width in rice[J]. Plant Cell, 2022, 34(11): 4313-4328. |
[30] | Zhang SN, Wang SK, Xu YX, et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant Cell Environ, 2015, 38(4): 638-654. |
[31] | Sakamoto T, Morinaka Y, Inukai Y, et al. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice[J]. Plant J, 2013, 73(4): 676-688. |
[32] | Obara M, Ikeda K, Itoh JI, et al. Characterization of leaf lateral symmetry 1 mutant in rice[J]. Breed Sci, 2004, 54(2): 157-163. |
[33] | Zhang GH, Xu Q, Zhu XD, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell, 2009, 21(3): 719-735. |
[34] | Liu B, Li PC, Li X, et al. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice[J]. Plant Physiol, 2005, 139(1): 296-305. |
[35] | Wu L, Zhang QQ, Zhou HY, et al. Rice microRNA effector complexes and targets[J]. Plant Cell, 2009, 21(11): 3421-3435. |
[36] | Yang CH, Li DY, Mao DH, et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice(Oryza sativa L.)[J]. Plant Cell Environ, 2013, 36(12): 2207-2218. |
[37] | Hu YF, Qin FJ, Huang LM, et al. Rice histone deacetylase genes display specific expression patterns and developmental functions[J]. Biochem Biophys Res Commun, 2009, 388(2): 266-271. |
[38] | Sazuka T, Kamiya N, Nishimura T, et al. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J]. Plant J, 2009, 60(2): 227-241. |
[39] | Yoshikawa T, Ito M, Sumikura T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes[J]. Plant J, 2014, 78(6): 927-936. |
[40] | Rong CY, Liu YX, Chang ZY, et al. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering[J]. J Exp Bot, 2022, 73(11): 3552-3568. |
[41] | Xu YC, Yan SY, Jiang S, et al. Identification of a rice leaf width gene Narrow Leaf 22(NAL22)through genome-wide association study and gene editing technology[J]. Int J Mol Sci, 2023, 24(4): 4073. |
[42] | Itoh H, Ueguchi-Tanaka M, Sato Y, et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei[J]. Plant Cell, 2002, 14(1): 57-70. |
[43] | Yoshikawa T, Eiguchi M, Hibara KI, et al. Rice SLENDER LEAF 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation[J]. J Exp Bot, 2013, 64(7): 2049-2061. |
[44] | Qiao L, Wu QL, Yuan LZ, et al. SMALL PLANT AND ORGAN 1(SPO1)encoding a cellulose synthase-like protein D4(OsCSLD4)is an important regulator for plant architecture and organ size in rice[J]. Int J Mol Sci, 2023, 24(23): 16974. |
[45] | Luan WJ, Liu YQ, Zhang FX, et al. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth[J]. Plant Biotechnol J, 2011, 9(4): 513-524. |
[46] | Wu C, Fu YP, Hu GC, et al. Isolation and characterization of a rice mutant with narrow and rolled leaves[J]. Planta, 2010, 232(2): 313-324. |
[47] | Li M, Xiong GY, Li R, et al. Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth[J]. Plant J, 2009, 60(6): 1055-1069. |
[48] | Ding ZQ, Lin ZF, Li Q, et al. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice(Oryza sativa L.)[J]. Biochem Biophys Res Commun, 2015, 457(2): 133-140. |
[49] | Hu J, Zhu L, Zeng DL, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice[J]. Plant Mol Biol, 2010, 73(3): 283-292. |
[50] | Shen WQ, Sun JJ, Xiao Z, et al. Narrow and stripe leaf 2 regulates leaf width by modulating cell cycle progression in rice[J]. Rice, 2023, 16(1): 20. |
[51] | Xie J, Liao HX, Wang XW, et al. DLT/OsGRAS-32, regulating leaf width and thickness by controlling cell number in Oryza sativa[J]. Mol Breed, 2019, 39(7): 104. |
[52] | Ma L, Sang XC, Zhang T, et al. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice[J]. New Phytol, 2017, 213(1): 275-286. |
[53] | Chen ZC, Yamaji N, Fujii-Kashino M, et al. A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice[J]. Plant Physiol, 2016, 171(1): 494-507. |
[54] | He ZS, Zeng J, Ren Y, et al. OsGIF1 positively regulates the sizes of stems, leaves, and grains in rice[J]. Front Plant Sci, 2017, 8: 1730. |
[55] | Shimano S, Hibara KI, Furuya T, et al. Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs[J]. Development, 2018, 145(7): dev159624. |
[56] | Wen Y, Wu KX, Chai BZ, et al. NLG1, encoding a mitochondrial membrane protein, controls leaf and grain development in rice[J]. BMC Plant Biol, 2023, 23(1): 418. |
[57] | Chen K, Guo T, Li XM, et al. NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice[J]. BMC Plant Biol, 2019, 19(1): 395. |
[58] | Tsukaya H. Mechanism of leaf-shape determination[J]. Annu Rev Plant Biol, 2006, 57: 477-496. |
[59] | Li Z, Liu JR, Wang XY, et al. LG5, a novel allele of EUI1, regulates grain size and flag leaf angle in rice[J]. Plants, 2023, 12(3): 675. |
[60] | Duan PG, Rao YC, Zeng DL, et al. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice[J]. Plant J, 2014, 77(4): 547-557. |
[61] | Sugimoto-Shirasu K, Roberts K. “Big it up”: endoreduplication and cell-size control in plants[J]. Curr Opin Plant Biol, 2003, 6(6): 544-553. |
[62] | Franco-Navarro JD, Brumós J, Rosales MA, et al. Chloride regulates leaf cell size and water relations in tobacco plants[J]. J Exp Bot, 2016, 67(3): 873-891. |
[63] | Cui YN, Li XT, Yuan JZ, et al. Chloride is beneficial for growth of the xerophyte Pugionium cornutum by enhancing osmotic adjustment capacity under salt and drought stresses[J]. J Exp Bot, 2020, 71(14): 4215-4231. |
[64] | Lin LH, Zhao YF, Liu F, et al. Narrow leaf 1(NAL1)regulates leaf shape by affecting cell expansion in rice(Oryza sativa L.)[J]. Biochem Biophys Res Commun, 2019, 516(3): 957-962. |
[65] | Jiang D, Fang JJ, Lou LM, et al. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division[J]. PLoS One, 2015, 10(2): e0118169. |
[66] | Elo A, Immanen J, Nieminen K, et al. Stem cell function during plant vascular development[J]. Semin Cell Dev Biol, 2009, 20(9): 1097-1106. |
[67] | Nelson T, Dengler N. Leaf vascular pattern formation[J]. Plant Cell, 1997, 9(7): 1121-1135. |
[68] | Xu PZ, Ali A, Han BL, et al. Current advances in molecular basis and mechanisms regulating leaf morphology in rice[J]. Front Plant Sci, 2018, 9: 1528. |
[69] | Furuta KM, Hellmann E, Helariutta Y. Molecular control of cell specification and cell differentiation during procambial development[J]. Annu Rev Plant Biol, 2014, 65: 607-638. |
[70] | Kang JL, Mizukami Y, Wang H, et al. Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana[J]. Planta, 2007, 226(5): 1207-1218. |
[71] | Zhai LY, Yan A, Shao KT, et al. Large Vascular Bundle Phloem Area 4 enhances grain yield and quality in rice via source-sink-flow[J]. Plant Physiol, 2023, 191(1): 317-334. |
[72] | Liu XF, Li M, Liu K, et al. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation[J]. J Exp Bot, 2016, 67(8): 2139-2150. |
[73] | Zhao SS, Zhao L, Liu FX, et al. NARROW AND ROLLED LEAF 2 regulates leaf shape, male fertility, and seed size in rice[J]. J Integr Plant Biol, 2016, 58(12): 983-996. |
[74] | Tsukaya H. Controlling size in multicellular organs: focus on the leaf[J]. PLoS Biol, 2008, 6(7): e174. |
[75] | Horiguchi G, Tsukaya H. Organ size regulation in plants: insights from compensation[J]. Front Plant Sci, 2011, 2: 24. |
[76] | Hisanaga T, Kawade K, Tsukaya H. Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants[J]. J Exp Bot, 2015, 66(4): 1055-1063. |
[77] | Zhang YQ, Berman A, Shani E. Plant hormone transport and localization: signaling molecules on the move[J]. Annu Rev Plant Biol, 2023, 74: 453-479. |
[78] | Xu YX, Xiao MZ, Liu Y, et al. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice[J]. Plant Mol Biol, 2017, 94: 97-107. |
[79] | Tsugafune S, Mashiguchi K, Fukui K, et al. Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants[J]. Sci Rep, 2017, 7(1): 13992. |
[80] | Ohmori Y, Tanaka W, Kojima M, et al. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice[J]. Plant Cell, 2013, 25(1): 229-241. |
[81] | Yasui Y, Ohmori Y, Takebayashi Y, et al. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice[J]. PLoS Genet, 2018, 14(4): e1007365. |
[82] | Zhang W, Peng KX, Cui FB, et al. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number[J]. Plant Biotechnol J, 2021, 19(2): 335-350. |
[83] | Duan JB, Yu H, Yuan K, et al. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice[J]. Proc Natl Acad Sci USA, 2019, 116(28): 14319-14324. |
[84] | Gao SP, Fang J, Xu F, et al. CYTOKININ OXIDASE/DEHYDRO-GENASE4 integrates cytokinin and auxin signaling to control rice crown root formation[J]. Plant Physiol, 2014, 165(3): 1035-1046. |
[85] | Gomi K, Sasaki A, Itoh H, et al. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice[J]. Plant J, 2004, 37(4): 626-634. |
[86] | Uzair M, Long HX, Zafar SA, et al. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice[J]. Plant Physiol, 2021, 186(1): 497-518. |
[87] | Zheng M, Wang YH, Liu X, et al. The RICE MINUTE-LIKE1(RML1)gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice[J]. J Exp Bot, 2016, 67(11): 3457-3469. |
[88] | Li RX, Sun RB, Hicks GR, et al. Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism[J]. Proc Natl Acad Sci USA, 2015, 112(1): E89-E98. |
[89] | Rosado A, Li RX, van de Ven W, et al. Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors[J]. Proc Natl Acad Sci USA, 2012, 109(48): 19537-19544. |
[90] | Yao Y, Ling QH, Wang H, et al. Ribosomal proteins promote leaf adaxial identity[J]. Development, 2008, 135(7): 1325-1334. |
[91] | Fujikura U, Horiguchi G, Ponce MR, et al. Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana[J]. Plant J, 2009, 59(3): 499-508. |
[92] | Pinon V, Etchells JP, Rossignol P, et al. Three PIGGYBACK genes that specifically influence leaf patterning encode ribosomal proteins[J]. Development, 2008, 135(7): 1315-1324. |
[93] | Zhou FJ, Roy B, von Arnim AG. Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24[J]. BMC Plant Biol, 2010, 10: 193. |
[94] | Nishimura T, Wada T, Yamamoto KT, et al. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning[J]. Plant Cell, 2005, 17(11): 2940-2953. |
[95] | Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology[J]. Trends Endocrinol Metab, 2009, 20(8): 394-401. |
[96] | Fujiwara MT, Yasuzawa M, Kojo KH, et al. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis[J]. PLoS One, 2018, 13(2): e0192380. |
[97] | Hudik E, Yoshioka Y, Domenichini S, et al. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant[J]. Plant Physiol, 2014, 166(1): 152-167. |
[98] | Hsieh WY, Liao JC, Hsieh MH. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis[J]. Plant Signal Behav, 2015, 10(10): e1071002. |
[99] | Chacinska A, Lind M, Frazier AE, et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17[J]. Cell, 2005, 120(6): 817-829. |
[100] | Albrecht R, Rehling P, Chacinska A, et al. The Tim21 binding domain connects the preprotein translocases of both mitochondrial membranes[J]. EMBO Rep, 2006, 7(12): 1233-1238. |
[101] | Genge MG, Mokranjac D. Coordinated translocation of presequence-containing precursor proteins across two mitochondrial membranes: knowns and unknowns of how TOM and TIM23 complexes cooperate with each other[J]. Front Physiol, 2022, 12: 806426. |
[102] | Burgess SJ, Reyna-Llorens I, Stevenson SR, et al. Genome-wide transcription factor binding in leaves from C3 and C4 grasses[J]. Plant Cell, 2019, 31(10): 2297-2314. |
[103] | Li S, Tian YH, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595-600. |
[104] | Kuijt SJH, Greco R, Agalou A, et al. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors[J]. Plant Physiol, 2014, 164(4): 1952-1966. |
[105] | Debernardi JM, Mecchia MA, Vercruyssen L, et al. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity[J]. Plant J, 2014, 79(3): 413-426. |
[106] | Kim JH, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis[J]. Plant J, 2003, 36(1): 94-104. |
[107] | Kim JH, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabi-dopsis[J]. Proc Natl Acad Sci USA, 2004, 101(36): 13374-13379. |
[108] | Lee BH, Ko JH, Lee SM, et al. The Arabidopsis GRF-INTERACT-ING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties[J]. Plant Physiol, 2009, 151(2): 655-668. |
[109] | Horiguchi G, Kim GT, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana[J]. Plant J, 2005, 43(1): 68-78. |
[110] | Xu C, Wang YH, Yu YC, et al. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering[J]. Nat Commun, 2012, 3: 750. |
[111] | Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis[J]. Plant Cell, 2010, 22(8): 2618-2629. |
[112] | Zhang ZJ, Runions A, Mentink RA, et al. A WOX/auxin biosynthesis module controls growth to shape leaf form[J]. Curr Biol, 2020, 30(24): 4857-4868. |
[113] | Chithung TA, Kansal S, Jajo R, et al. Understanding the evolution of miRNA biogenesis machinery in plants with special focus on rice[J]. Funct Integr Genomics, 2023, 23(1): 30. |
[114] | Manavella PA, Yang SW, Palatnik J. Keep calm and carry on: miRNA biogenesis under stress[J]. Plant J, 2019, 99(5): 832-843. |
[115] | Schommer C, Debernardi JM, Bresso EG, et al. Repression of cell proliferation by miR319-regulated TCP4[J]. Mol Plant, 2014, 7(10): 1533-1544. |
[116] | Palatnik JF, Allen E, Wu XL, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. |
[117] | Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biol, 2008, 6(9): e230. |
[118] | Ort DR, Merchant SS, Alric J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proc Natl Acad Sci USA, 2015, 112(28): 8529-8536. |
[119] | Jathar V, Saini K, Chauhan A, et al. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice[J]. New Phytol, 2022, 234(3): 867-883. |
[120] | Sanni KA, Fawole I, Guei RG, et al. Geographical patterns of phenotypic diversity in Oryza sativa landraces of Côte d’Ivoire[J]. Euphytica, 2008, 160(3): 389-400. |
[121] | 李杰, 田蓉蓉, 白天亮, 等. 水稻回交群体剑叶性状综合评价及QTL定位[J]. 中国水稻科学, 2021, 35(6): 573-585. |
Li J, Tian RR, Bai TL, et al. Comprehensive evaluation and QTL analysis for flag leaf traits using a backcross population in rice[J]. Chin J Rice Sci, 2021, 35(6): 573-585. | |
[122] | Liu MM, Shi ZY, Zhang XH, et al. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice[J]. Nat Plants, 2019, 5(4): 389-400. |
[123] | Li JY, Sun YW, Du JL, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Mol plant, 2017, 10(3): 526-529. |
[124] | Lu YM, Zhu JK. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Mol plant, 2017, 10(3): 523-525. |
[125] | Lorenzo CD, Debray K, Herwegh D, et al. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize[J]. Plant Cell, 2023, 35(1): 218-238. |
[126] | Yeh SY, Chen HW, Ng CY, et al. Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield[J]. Rice, 2015, 8(1): 36. |
[127] | Ashikari M, Sakakibara H, Lin SY, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
[1] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[2] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[3] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[4] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[5] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[6] | 刘文浩, 吴刘记, 徐芳. 小肽调控植物分生组织发育的机制及其在作物改良中的研究进展[J]. 生物技术通报, 2024, 40(7): 1-18. |
[7] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[8] | 王迪, 张晓宇, 宋宇鑫, 郑东然, 田静, 李玉花, 王宇, 吴昊. 细胞全能性转录因子调控植物组培再生的分子机制研究进展[J]. 生物技术通报, 2024, 40(6): 23-33. |
[9] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[10] | 花子晴, 周静远, 董合忠. 双子叶植物下胚轴和顶端弯钩发育及其对出苗的调控机制[J]. 生物技术通报, 2024, 40(4): 23-32. |
[11] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[12] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[13] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[14] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[15] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||