生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 88-102.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0311

• 综述与专论 • 上一篇    下一篇

水稻叶宽调控机制及相关基因研究进展

乔承彬(), 宋佳伟, 杨辉, 段凯蓉, 冉杰, 孔维儒, 冯培媛, 罗成科, 李培富, 田蕾()   

  1. 宁夏大学农学院 宁夏优势特色作物现代分子育种重点实验室,银川 750021
  • 收稿日期:2024-03-31 出版日期:2024-11-26 发布日期:2024-12-19
  • 通讯作者: 田蕾,男,博士,教授,研究方向:水稻遗传育种;E-mail: tianlei2012@nxu.edu.cn
  • 作者简介:乔承彬,男,硕士研究生,研究方向:水稻叶形遗传育种;E-mail: qiao1053811988@163.com
  • 基金资助:
    宁夏自然科学基金优秀青年项目(2022AAC05011);国家自然科学基金项目(32260492);宁夏粮食作物种质创制与生长调控科技创新团队(2022BSB03109)

Advances in the Mechanism of Leaf Width Regulation and Related Genes in Rice

QIAO Cheng-bin(), SONG Jia-wei, YANG Hui, DUAN Kai-rong, RAN Jie, KONG Wei-ru, FENG Pei-yuan, LUO Cheng-ke, LI Pei-fu, TIAN Lei()   

  1. School of Agriculture, Ningxia University, Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021
  • Received:2024-03-31 Published:2024-11-26 Online:2024-12-19

摘要:

水稻叶宽是叶片形态的重要组成部分,对叶形构建和光合作用具有重要的生物学意义。水稻通过叶原基中-侧轴方向的细胞分裂和细胞扩张完成叶宽形态建成,该过程受到植物激素、细胞代谢以及相关基因表达水平的影响。TDD1NAL7FIB参与水稻依赖色氨酸的生长素生物合成途径;GID1GID2SLR1参与了GA对水稻叶宽的负调控;NAL21NLG1NAL9等基因对于维持细胞器稳态和细胞正常代谢至关重要。大多数水稻叶宽基因通过生长素信号转导作用于细胞分裂,CCC1则是通过调节细胞渗透势参与细胞扩张。转录因子WL1通过募集共阻遏物TOPLESS相关蛋白负调控丝氨酸蛋白酶基因NAL1的表达,进而影响生长素信号通路。发掘叶宽发育相关基因并将其应用于育种实践对于提高水稻产量具有重要意义,利用种质资源挖掘水稻叶宽基因的优异单倍型和以CRISPR/Cas9为代表的基因编辑技术为改良水稻叶宽提供了丰富的手段和途径。在利用水稻叶宽基因进行性状改良时,应当充分考虑基因多效性和基因互作效应,与生产实际相结合,避免对其他性状产生不良影响。本文从组织学特征、植物激素、分子机制及叶宽相关基因等方面综述了水稻叶宽遗传调控机制,探讨水稻叶宽改良在育种中的意义及策略,为水稻叶形分子机理研究和“理想株型”育种提供思路。

关键词: 水稻, 叶宽, 调控机制, 性状改良

Abstract:

Rice leaf width is a crucial component of leaf morphology, which has biological significance to leaf construction and photosynthesis. Leaf width morphogenesis is accomplished in rice by cell division and cell expansion in the medio-lateral axis direction of the leaf primordium, a process that is influenced by phytohormones, cellular metabolism, and the expression levels of related genes. TDD1, NAL7 and FIB are involved in the tryptophan-dependent auxin biosynthesis pathway in rice, and GID1, GID2, and SLR1 are involved in the negative regulation of leaf width in rice by GA. Genes such as NAL21, NLG1, and NAL9 are essential for maintaining organelle homeostasis and normal cellular metabolism. While most rice leaf width genes act on cell division through the auxin signaling, CCC1 is involved in cell expansion by regulating cellular osmotic potential. The transcription factor WL1 negatively regulates the expression of the serine protease gene NAL1 by recruiting the co-repressor TOPLESS-RELATED PROTEIN, and consequently the auxin signaling pathway is affected. Exploring the genes related to leaf width development and applying them to breeding practice is of great significance for improving rice yield. Utilizing germplasm resources to explore superior haplotypes of rice leaf width gene and gene editing technology represented by CRISPR/Cas9 provide abundant means and ways to improve rice leaf width. When utilizing the rice leaf width gene for trait improvement, comprehensive consideration should be given to pleiotropy and genetic interactions, which should be combined with production practice to avoid adverse effects on other traits. In this review we summarized the genetic regulatory mechanism of rice leaf width from the aspects of histological characteristics, plant hormones, molecular mechanisms and leaf width-related genes, discussed the significance and strategies of rice leaf width improvement in breeding, and provided ideas for research on the molecular mechanism of rice leaf shape and the breeding of “ideal plant architecture”.

Key words: rice, leaf width, regulatory mechanism, improvement of trait