生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 255-263.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0178
李庆懋(), 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰()
收稿日期:
2024-02-23
出版日期:
2024-08-26
发布日期:
2024-09-05
通讯作者:
黄立钰,男,博士,教授,研究方向:水稻分子遗传学;E-mail: lyhuang@ynu.edu.cn作者简介:
李庆懋,男,硕士研究生,研究方向:水稻遗传育种;E-mail: 2856208870@qq.com
基金资助:
LI Qing-mao(), PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu()
Received:
2024-02-23
Published:
2024-08-26
Online:
2024-09-05
摘要:
【目的】为筛选促进水稻高效吸收铁元素的嗜铁内生细菌,探究野生稻中不同种属的内生细菌的产铁载体能力和促进水稻铁素吸收效果。【方法】对前期从4种野生稻(Oryza longistaminata、O. rufipogon、O. officinalis和O. minuta)中分离获得的198株内生细菌进行产铁载体定量测定分析,从128株具有产铁载体能力的内生菌株中筛选获得82株高产铁载体内生菌株;16S rRNA基因序列分析显示82个菌株属于18个种属;结合其产铁载体能力,选择18株产铁载体候选菌株进行促进水稻铁吸收效果鉴定。【结果】不同种属的功能菌株促进铁吸收效果有差异,其中(类)芽孢杆菌属、假单胞菌属和考氏科萨克氏菌属促进铁吸收效果明显,根据促生试验从18株菌株中筛选出了5株最优的高效产铁载体菌株,并进一步验证了其可以部分恢复水稻铁吸收缺陷突变体(osblhl156)的缺铁黄化表型。【结论】明确了植物互作微生物所产的铁载体可以被水稻利用,丰富了水稻铁吸收相关微生物资源,为水稻-微生物互作促进水稻铁吸收提供菌种资源和理论依据。
李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263.
LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice[J]. Biotechnology Bulletin, 2024, 40(8): 255-263.
图1 内生菌产铁载体能力分析 A:四种野生稻中产铁载体最强的产铁载体功能菌株的平板示意图;B:四种野生稻分离的产铁载体菌株mp值;C:128株内生细菌产铁载体能力定量分析PCA图。OL表示长雄野生稻,OR表示普通野生稻,OO表示药用野生稻,OM表示小粒野生稻
Fig. 1 Siderophore-producing ability analysis of isolated endophytic bacteria A: Plate schematic diagram of strains with the strongest siderophore-producing function from four wild rices. B: mp values of siderophore contents of endophytic bacteria among four wild rices. C: PCA diagram of siderophore contents produced by 128 endophytic bacteria. OL refers to Oryza longistaminata, OR to O. rufipogon, OO to O. officinalis, and OM to O. minuta
图2 82株内生细菌多样性分类(A)和18株不同种属候选菌株的产铁载体能力(B)
Fig. 2 Diversity classification of 82 endophytic bacteria (A)and siderophore-producing ability of 18 candidate strains of different genera/species (B)
图3 不同菌株浸种处理后水稻表型鉴定 不同内生菌处理后苗期形态图(A);苗期株高(B)、根长(C)、叶绿素含量(D)和铁含量(E)统计分析。比例尺10 cm;标有*表示与对照相比达到差异显著(P < 0.05)
Fig. 3 Phenotyping of rice treated by different endophytic bacteria with siderophore-producing ability Morphological phenotype(A)and statistical analysis of plant height(B), root length(C), chlorophyll(D), and iron content(E)after treated with different endophytic bacteria. Scale bar: 10 cm; * indicates significant difference compared with the control(P < 0.05)
接种菌株 Inoculated strain | 生长和生理指标Growth and physiological indicators | ||||
---|---|---|---|---|---|
株高 Plant height/cm | 根长 Root length/cm | 叶绿素含量(SPAD)Chlorophyll content (SPAD) | 铁含量 Total iron content/(mg·kg-1) | ||
OML3-3 | - | + | + | + | |
OMR1-7 | + | + | + | + | |
OOS1-3 | - | + | + | + | |
OOS2-3 | - | - | + | + | |
ORL1-5 | - | - | + | - | |
OML3-6 | + | + | + | + | |
ORL1-9 | - | - | + | + | |
ORR1-18 | + | - | + | - | |
OLL1-12 | - | - | - | - | |
OML2-8 | - | - | + | - | |
ORR3-11 | - | - | - | + | |
OOR2-3 | - | - | - | - | |
OMS2-7 | - | + | - | + | |
OMR2-7 | + | - | + | + | |
OOL1-5 | + | - | - | + | |
ORR3-14 | - | - | - | + | |
OLL1-10 | - | + | - | + | |
OLL2-1 | + | + | - | - |
表1 18株产铁载体菌株对ZH11株高、根长、叶绿素和铁含量的促进效果
Table 1 Effect of 18 siderophore-producing strains on the plant height, root length, chlorophyll and iron content of ZH11
接种菌株 Inoculated strain | 生长和生理指标Growth and physiological indicators | ||||
---|---|---|---|---|---|
株高 Plant height/cm | 根长 Root length/cm | 叶绿素含量(SPAD)Chlorophyll content (SPAD) | 铁含量 Total iron content/(mg·kg-1) | ||
OML3-3 | - | + | + | + | |
OMR1-7 | + | + | + | + | |
OOS1-3 | - | + | + | + | |
OOS2-3 | - | - | + | + | |
ORL1-5 | - | - | + | - | |
OML3-6 | + | + | + | + | |
ORL1-9 | - | - | + | + | |
ORR1-18 | + | - | + | - | |
OLL1-12 | - | - | - | - | |
OML2-8 | - | - | + | - | |
ORR3-11 | - | - | - | + | |
OOR2-3 | - | - | - | - | |
OMS2-7 | - | + | - | + | |
OMR2-7 | + | - | + | + | |
OOL1-5 | + | - | - | + | |
ORR3-14 | - | - | - | + | |
OLL1-10 | - | + | - | + | |
OLL2-1 | + | + | - | - |
图4 高效产铁载体菌株部分恢复osbhlh156突变体缺铁失绿表型 产铁载体菌株处理前后植株形态表型(A)、铁含量(B)和叶绿素含量(C)。比例尺5 cm;标有*表示与对照相比达到差异显著(P < 0.05)
Fig. 4 Phenotype of osbhlh156 mutants recovered by highly efficient candidate strains Morphological phenotype(A)and iron content(B)and chlorophyll content(C)of osbhlh156 plants before and after treated with endophytic bacteria. Scale bar: 5 cm. * indicates significant difference compared with the control(P < 0.05)
[1] | 刘金涛, 姚凡, 李臻园, 等. 植物铁素吸收机制研究进展[J]. 热带农业科学, 2022, 42(5): 26-33. |
Liu JT, Yao F, Li ZY, et al. Advances on the mechanism of iron absorption in plants[J]. Chin J Trop Agric, 2022, 42(5): 26-33. | |
[2] | 李利敏, 吴良欢, 马国瑞. 植物吸收铁机理及其相关基因研究进展[J]. 土壤通报, 2010, 41(4): 994-999. |
Li LM, Wu LH, Ma GR. The progress on iron-absorbing mechanism and related gene in plant[J]. Chin J Soil Sci, 2010, 41(4): 994-999. | |
[3] | 张进, 吴良欢, 孔向军, 等. 铁锌混合肥喷施对豌豆子粒铁、锌、可溶性糖和维生素C含量的影响[J]. 植物营养与肥料学报, 2006, 12(2): 2245-2249. |
Zhang J, Wu LH, Kong XJ, et al. Effect of foliar application of iron, zinc mixed fertilizers on the content of iron, zinc, soluble sugar and Vitamin C in green pea seeds[J]. Plant Nutr Fertil Sci, 2006, 12(2): 2245-2249. | |
[4] |
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[5] |
Yuan X, Wang YM, Ji P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6641): 187-191.
doi: 10.1126/science.abn6301 pmid: 37053316 |
[6] | Barbosa Filho MP, Yamada T. Upland rice production in Brazil[J]. Better Crops International, 2002, 16: 43-46. |
[7] |
Guerinot ML, Yi Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiol, 1994, 104(3): 815-820.
doi: 10.1104/pp.104.3.815 pmid: 12232127 |
[8] | 章艺, 刘鹏, 宋金敏, 等. 水稻根尖铁的积累及附着形态研究[J]. 中国生态农业学报, 2009, 17(5): 929-932. |
Zhang Y, Liu P, Song JM, et al. Forms and accumulation ofiron at rice root tip[J]. Chin J Eco Agric, 2009, 17(5): 929-932. | |
[9] | Staiger D. Chemical strategies for iron acquisition in plants[J]. Angew Chem Int Ed Engl, 2002, 41(13): 2259-2264. |
[10] |
Nozoye T, Nagasaka S, Kobayashi T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. J Biol Chem, 2011, 286(7): 5446-5454.
doi: 10.1074/jbc.M110.180026 pmid: 21156806 |
[11] |
Takahashi K, Hayashi KI, Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis[J]. Plant Physiol, 2012, 159(2): 632-641.
doi: 10.1104/pp.112.196428 pmid: 22492846 |
[12] |
Lee S, Chiecko JC, Kim SA, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiol, 2009, 150(2): 786-800.
doi: 10.1104/pp.109.135418 pmid: 19376836 |
[13] | 张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报, 2018, 24(5): 1365-1377. |
Zhang NN, Shangguan ZP, Chen J. Molecular physiological mechanism and regulation of plant responses to iron deficiency stress[J]. J Plant Nutr Fertil, 2018, 24(5): 1365-1377. | |
[14] |
Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8): 1002-1010.
doi: 10.1038/s41564-020-0719-8 pmid: 32393858 |
[15] |
Wang NQ, Wang TQ, Chen Y, et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize[J]. Nat Commun, 2024, 15(1): 839.
doi: 10.1038/s41467-024-45207-0 pmid: 38287073 |
[16] |
Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications[J]. Microb Biotechnol, 2014, 7(3): 196-208.
doi: 10.1111/1751-7915.12117 pmid: 24576157 |
[17] | 董子阳, 胡佳杰, 胡宝兰. 微生物铁载体转运调控机制及其在环境污染修复中的应用[J]. 生物工程学报, 2019, 35(11): 2189-2200. |
Dong ZY, Hu JJ, Hu BL. Regulation of microbial siderophore transport and its application in environmental remediation[J]. Chin J Biotechnol, 2019, 35(11): 2189-2200. | |
[18] | Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. J Exp Mar Biol Ecol, 2004, 311(1): 1-9. |
[19] |
Wilson BR, Bogdan AR, Miyazawa M, et al. Siderophores in iron metabolism: from mechanism to therapy potential[J]. Trends Mol Med, 2016, 22(12): 1077-1090.
doi: S1471-4914(16)30147-2 pmid: 27825668 |
[20] |
Oberegger H, Schoeser M, Zadra I, et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans[J]. Mol Microbiol, 2001, 41(5): 1077-1089.
pmid: 11555288 |
[21] | 雷平, 黄军, 黄彬彬, 等. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用[J]. 激光生物学报, 2020, 29(4): 379-384. |
Lei P, Huang J, Huang BB, et al. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from capscium[J]. Acta Laser Biol Sin, 2020, 29(4): 379-384. | |
[22] | Wang YH, Zhang GY, Huang Y, et al. A potential biofertilizer-siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis[J]. Front Microbiol, 2022, 13: 870413. |
[23] |
Qi B, Han M. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase[J]. Cell, 2018, 175(2): 571-582.e11.
doi: S0092-8674(18)30959-0 pmid: 30146159 |
[24] |
Priyanka, Agrawal T, Kotasthane AS, et al. Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas[J]. 3 Biotech, 2017, 7(1): 27.
doi: 10.1007/s13205-017-0602-3 pmid: 28401463 |
[25] | Liu Q, Cheng L, Nian H, et al. Linking plant functional genes to rhizosphere microbes: a review[J]. Plant Biotechnol J, 2023, 21(5): 902-917. |
[26] |
Vannier N, Mesny F, Getzke F, et al. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota[J]. Nat Commun, 2023, 14(1): 8274.
doi: 10.1038/s41467-023-43688-z pmid: 38092730 |
[27] |
杨立凡, 田青霖, 龚禹瑞, 等. 小粒野生稻内生细菌的分离鉴定和促生功能分析[J]. 中国稻米, 2023, 29(4): 78-83.
doi: 10.3969/j.issn.1006-8082.2023.04.014 |
Yang LF, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza minuta and their plant growth-promoting activities[J]. China Rice, 2023, 29(4): 78-83. | |
[28] | 马永海, 田青霖, 龚禹瑞, 等. 普通野生稻内生细菌的分离鉴定及其对多年生稻的促生效果[J]. 云南大学学报: 自然科学版, 2023, 45(3): 768-778. |
Ma YH, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza rufipogon and their effect on perennial rice growth[J]. J Yunnan Univ Nat Sci Ed, 2023, 45(3): 768-778. | |
[29] | Tian QL, Gong YR, Liu S, et al. Endophytic bacterial communities in wild rice(Oryza officinalis)and their plant growth-promoting effects on perennial rice[J]. Front Plant Sci, 2023, 14: 1184489. |
[30] | Rungin S, Indananda C, Suttiviriya P, et al. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant(Oryza sativa L. cv. KDML105)[J]. Antonie Van Leeuwenhoek, 2012, 102(3): 463-472. |
[31] |
Wein T, Romero Picazo D, Blow F, et al. Currency, exchange, and inheritance in the evolution of symbiosis[J]. Trends Microbiol, 2019, 27(10): 836-849.
doi: S0966-842X(19)30151-9 pmid: 31257129 |
[32] |
Bai B, Liu WD, Qiu XY, et al. The root microbiome: community assembly and its contributions to plant fitness[J]. J Integr Plant Biol, 2022, 64(2): 230-243.
doi: 10.1111/jipb.13226 |
[33] | 崔冬明, 单晨, 史利桦, 等. 生物源新型铁螯合剂研究进展及其应用[J]. 华中农业大学学报, 2023, 42(6): 59-72. |
Cui DM, Shan C, Shi LH, et al. Progress and application of novel iron biochelates[J]. J Huazhong Agric Univ, 2023, 42(6): 59-72. | |
[34] | Sah S, Singh N, Singh R. Iron acquisition in maize(Zea mays L.)using Pseudomonas siderophore[J]. 3 Biotech, 2017, 7(2): 121. |
[35] | da Silva JF, da Silva TR, Escobar IEC, et al. Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands[J]. World J Microbiol Biotechnol, 2018, 34(12): 186. |
[36] |
Finazzi G, Petroutsos D, Tomizioli M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell Calcium, 2015, 58(1): 86-97.
doi: 10.1016/j.ceca.2014.10.002 pmid: 25454594 |
[37] | Liang G, Zhang HM, Li Y, et al. Oryza sativa fer-like fe deficiency-induced transcription factor(Osfit/Osbhlh156)interacts with Osiro2 to regulate iron homeostasis[J]. J Integr Plant Biol, 2020, 62(5): 668-689. |
[1] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[2] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[3] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[4] | 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. |
[5] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[6] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[7] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[8] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[9] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
[10] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[11] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[12] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[13] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[14] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[15] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||