生物技术通报 ›› 2024, Vol. 40 ›› Issue (9): 172-180.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0207
朱诗斐1,2(), 刘敬1, 张家芊1,2, 黄文坤2, 彭德良2, 孔令安2, 彭焕2,3()
收稿日期:
2024-03-04
出版日期:
2024-09-26
发布日期:
2024-10-12
通讯作者:
彭焕,男,博士,研究员,研究方向:植物线虫与寄主互作机制;E-mail: penghuan@caas.cn作者简介:
朱诗斐,硕士研究生,研究方向:植物线虫致病机制;E-mail: zsf121355@163.com
基金资助:
ZHU Shi-fei1,2(), LIU Jing1, ZHANG Jia-qian1,2, HUANG Wen-kun2, PENG De-liang2, KONG Ling-an2, PENG Huan2,3()
Received:
2024-03-04
Published:
2024-09-26
Online:
2024-10-12
摘要:
拟禾本科根结线虫(Meloidogyne graminicola)是水稻(Oryza sativa L)的重要病原物之一,在世界各地的危害严重,极大地影响了水稻的安全生产。解析拟禾本科根结线虫致病和水稻的抗病机制是近年来主要的研究热点,同时也是制定水稻根结线虫防控新策略的主要依据。随着分子生物学和基因组学技术的发展,拟禾本科根结线虫的基因组被破译,多个与线虫致病性相关的基因功能得到解析。同时,在水稻染色体中定位到多个与拟禾本科根结线虫抗性相关的数量性状位点(QTLs),克隆出首个水稻抗根结线虫的基因MG1。此外,水稻为了应对根结线虫的侵染,还能通过调控茉莉酸和乙烯等激素信号通路,激活本身抗病基因的表达调控,从而抑制线虫的致病和寄生。上述研究成果为深入理解拟禾本科根结线虫致病机理及水稻抗根结线虫的作用机制提供了重要依据。本文综述了近年来拟禾本科根结线虫致病机制和水稻应答机制的研究进展,并展望未来拟禾本科根结线虫与寄主互作机制的新方向。
朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180.
ZHU Shi-fei, LIU Jing, ZHANG Jia-qian, HUANG Wen-kun, PENG De-liang, KONG Ling-an, PENG Huan. Research Progress in Molecular Mechanism of Interaction Between Rice and Meloidogyne graminicola[J]. Biotechnology Bulletin, 2024, 40(9): 172-180.
[1] |
Deng NY, Grassini P, Yang HS, et al. Closing yield gaps for rice self-sufficiency in China[J]. Nat Commun, 2019, 10(1): 1725.
doi: 10.1038/s41467-019-09447-9 pmid: 30979872 |
[2] |
Mantelin S, Bellafiore S, Kyndt T. Meloidogyne graminicola: a major threat to rice agriculture[J]. Mol Plant Pathol, 2017, 18(1): 3-15.
doi: 10.1111/mpp.12394 pmid: 26950515 |
[3] | 谢家廉, 杨芳, 黄文坤, 等. 近年水稻主要线虫病害的研究进展[J]. 植物保护学报, 2017, 44(6): 940-949. |
Xie JL, Yang F, Huang WK, et al. Advances in major rice parasitic nematodes in recent years[J]. J Plant Prot, 2017, 44(6): 940-949. | |
[4] | Rusinque L, Maleita C, Abrantes I, et al. Meloidogyne graminicola-a threat to rice production: review update on distribution, biology, identification, and management[J]. Biology, 2021, 10(11): 1163. |
[5] |
Haegeman A, Mantelin S, Jones JT, et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene, 2012, 492(1): 19-31.
doi: 10.1016/j.gene.2011.10.040 pmid: 22062000 |
[6] | Jagdale S, Rao U, Giri AP. Effectors of root-knot nematodes: an arsenal for successful parasitism[J]. Front Plant Sci, 2021, 12: 800030. |
[7] | Israel P, Rao YS, Rao YRVJ. Investigations on nematodes in rice and rice soils.I.[J]. Oryza, 1963, 1(2): 125-128. |
[8] | Rich JR, Brito JA, Kaur R, et al. Weed species as hosts of meloidogyne: A review[J]. Nematropica, 2009, 39(2): 157-185. |
[9] | Pokharel RR, Abawi GS, Duxbury JM, et al. Variability and the recognition of two races in Meloidogyne graminicola[J]. Australas Plant Pathol, 2010, 39(4): 326-333. |
[10] | Upadhyay V, Bhardwaj N, Neelam R, et al. Meloidogyne Graminicola(golden and birchfield)threat to rice production.res[J]. J Agric For Sci, 2014, 2, 31-36 |
[11] | Gilces CT, Santillan DN, Velasco L. Plant-parasitic nematodes associated with rice in Ecuador[J]. Nematropica, 2016, 46: 45-53. |
[12] | Fanelli E, Cotroneo A, Carisio L, et al. Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy[J]. Eur J Plant Pathol, 2017, 149(2): 467-476. |
[13] | 赵洪海, 刘维志, 梁晨, 等. 根结线虫在中国的一新纪录种——拟禾本科根结线虫Meloidogyne graminicol[J]. 植物病理学报, 2001, 31(2): 184-188. |
Zhao HH, Liu WZ, Liang C, et al. meloidogyne graminicola, a new record species from China[J]. Acta Phytopathol Sin, 2001, 31(2): 184-188. | |
[14] | 杜树勋. 早稻秧田稻根结线虫病的发生调查初报[J]. 广西植保, 2003, 16(1): 3-5. |
Du SX. Preliminary report on the occurrence of root-knot nematode disease in early rice seedling field[J]. Guangxi Plant Prot, 2003, 16(1): 3-5. | |
[15] |
Song ZQ, Zhang DY, Liu Y, et al. First report of Meloidogyne graminicola on rice(Oryza sativa)in Hunan Province, China[J]. Plant Dis, 2017, 101(12): 2153.
doi: 10.1094/PDIS-06-17-0844-PDN |
[16] | Tian ZL, Barsalote EM, Li XL, et al. First report of root-knot nematode, Meloidogyne graminicola, on rice in Zhejiang, eastern China[J]. Plant Dis, 2017, 101(12): 2152. |
[17] | Wang GF, Xiao LY, Luo HG, et al. First report of Meloidogyne graminicola on rice in Hubei Province of China[J]. Plant Dis, 2017, 101(6): 1056. |
[18] |
Xie JL, Xu X, Yang F, et al. First report of root-knot nematode, Meloidogyne graminicola, on rice in Sichuan Province, southwest China[J]. Plant Dis, 2019, 103(8): 2142.
doi: 10.1094/PDIS-03-19-0502-PDN |
[19] | Ju YL, Wu X, Tan GJ, et al. First report of Meloidogyne graminicola on rice in Anhui Province, China[J]. Plant Dis, 2021, 105(2): 512. |
[20] | Liu MY, Liu J, Huang WK, et al. First report of Meloidogyne graminicola on rice in Henan Province, China[J]. Plant Dis, 2021, 105(10): 3308. |
[21] | 杨芳, 徐幸, 郭荣, 等. 中国北方稻田及其周边环境中根结线虫种类鉴定[J]. 西北农林科技大学学报: 自然科学版, 2024, 52(1): 98-108. |
Yang F, Xu X, Guo R, et al. Identification of root-knot nematode species from paddy field and surrounding environment in Northern China[J]. J Northwest A F Univ Nat Sci Ed, 2024, 52(1): 98-108. | |
[22] | Sekhon A, Dhillon NK, Bhatia D, et al. Novel sources of combined resistance against rice root- knot nematode and brown spot disease in Oryza rufipogon[J]. Rice Sci, 2023, 30(6): 504-508. |
[23] | 黄文坤, 向超, 刘莹, 等. 水稻拟禾本科根结线虫发生与防治[J]. 植物病理学报, 2018, 48(3): 289-296. |
Huang WK, Xiang C, Liu Y, et al. Rearch progress on the occurrence and controlling of root-knot nematode Meloidogyne graminicola in rice[J]. Acta Phytopathol Sin, 2018, 48(3): 289-296. | |
[24] | Buthanna Narasimhamurthy H, Sehgal M, Ganesha Naik R. Rice root-knot nematode(Meloidogyne graminicola): A major menace in rice production[M]//Sustainable Rice Production - Challenges, Strategies and Opportunities. London: IntechOpen, 2023: 1-14. |
[25] | Hazarika BP. Meloidogyne graminicola and Sclerotium rolfsii interaction in rice[J]. Int Rice Res Notes, 2001, 26(1):22. |
[26] | Kyndt T, Zemene HY, Haeck A, et al. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease[J]. Mol Plant Microbe Interact, 2017, 30(3): 255-266. |
[27] | Nguyen HT, Vang S, Phan NT, et al. Identification and characterization of a virulent population of Meloidogyne graminicola[J]. Australas Plant Pathol, 2023, 52(5): 391-405. |
[28] | Liu MY, Shao HD, Wu YY, et al. Meloidogyne graminicola population structure in China suggests a south-to-north expansion[J]. Plant Dis, 2023, 107(7): 2070-2080. |
[29] | Cosgrove DJ. Structure and growth of plant cell walls[J]. Nat Rev Mol Cell Biol, 2024, 25(5): 340-358. |
[30] | Rosso MN, Favery B, Piotte C, et al. Isolation of a cDNA encoding a beta-1, 4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism[J]. Mol Plant Microbe Interact, 1999, 12(7): 585-591. |
[31] | Chen JS, Li ZW, Lin BR, et al. A Meloidogyne graminicola pectate lyase is involved in virulence and activation of host defense responses[J]. Front Plant Sci, 2021, 12: 651627. |
[32] | Phan NT, Orjuela J, Danchin EGJ, et al. Genome structure and content of the rice root-knot nematode(Meloidogyne graminicola)[J]. Ecol Evol, 2020, 10(20): 11006-11021. |
[33] | Petitot AS, Dereeper A, Agbessi M, et al. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants[J]. Mol Plant Pathol, 2016, 17(6): 860-874. |
[34] | Qin L, Kudla U, Roze EHA, et al. A nematode expansin acting on plants[J]. Nature, 2004, 427: 30. |
[35] | Escobar C, Barcala M, Cabrera J, et al. Overview of root-knot nematodes and giant cells[M]// Advances in Botanical Research. Amsterdam: Elsevier, 2015: 1-32. |
[36] | Ji HL, Gheysen G, Denil S, et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots[J]. J Exp Bot, 2013, 64(12): 3885-3898. |
[37] |
黄文坤, 于敬文, 贾建平, 等. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0332 |
Huang WK, Yu JW, Jia JP, et al. Effects of plant hormones on the establishment and development of plant parasitic nematodes’ feeding sites[J]. Biotechnol Bull, 2021, 37(7): 56-64. | |
[38] | Xue BY, Hamamouch N, Li CY, et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J]. Phytopathology, 2013, 103(2): 175-181. |
[39] |
Engler JD, Rodiuc N, Smertenko A, et al. Plant actin cytoskeleton re-modeling by plant parasitic nematodes[J]. Plant Signal Behav, 2010, 5(3): 213-217.
doi: 10.4161/psb.5.3.10741 pmid: 20038822 |
[40] | Leelarasamee N, Zhang L, Gleason C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J]. PLoS Pathog, 2018, 14(3): e1006947. |
[41] | Wang GD, Fiers M. CLE peptide signaling during plant development[J]. Protoplasma, 2010, 240(1): 33-43. |
[42] | Somvanshi VS, Dash M, Bhat CG, et al. An improved draft genome assembly of Meloidogyne graminicola IARI strain using long-read sequencing[J]. Gene, 2021, 793: 145748. |
[43] | Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. |
[44] |
Torres MA, Jones JDG, Dangl JL. Reactive oxygen species signaling in response to pathogens[J]. Plant Physiol, 2006, 141(2): 373-378.
doi: 10.1104/pp.106.079467 pmid: 16760490 |
[45] | 姚珂, 郑经武, 黄文坤, 等. 植物寄生线虫效应蛋白调控寄主防卫反应分子机制研究进展[J]. 植物病理学报, 2020, 50(5): 517-530. |
Yao K, Zheng JW, Huang WK, et al. Research progress on the regulation of host defense by plant parasitic nematode effectors[J]. Acta Phytopathol Sin, 2020, 50(5): 517-530. | |
[46] |
Campos EG, Jesuino RS, Dantas AD, et al. Oxidative stress response in Paracoccidioides brasiliensis[J]. Genet Mol Res, 2005, 4(2): 409-429.
pmid: 16110454 |
[47] | Song HD, Lin BR, Huang QL, et al. The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice[J]. J Exp Bot, 2021, 72(15): 5638-5655. |
[48] |
Zhuo K, Naalden D, Nowak S, et al. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism[J]. Mol Plant Pathol, 2019, 20(3): 346-355.
doi: 10.1111/mpp.12759 pmid: 30315612 |
[49] |
Naalden D, Haegeman A, de Almeida-Engler J, et al. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses[J]. Mol Plant Pathol, 2018, 19(11): 2416-2430.
doi: 10.1111/mpp.12719 pmid: 30011122 |
[50] | Chen JS, Hu LL, Sun LH, et al. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism[J]. Mol Plant Pathol, 2018, 19(8): 1942-1955. |
[51] | Liu J, Zhang JQ, Wei Y, et al. The nematode effector calreticulin competes with the high mobility group protein OsHMGB1 for binding to the rice calmodulin-like protein OsCML31 to enhance rice susceptibility to Meloidogyne graminicola[J]. Plant Cell Environ, 2024, 47(5): 1732-1746. |
[52] | Chen JS, Lin BR, Huang QL, et al. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J]. PLoS Pathog, 2017, 13(4): e1006301. |
[53] | Dimkpa SON, Lahari Z, Shrestha R, et al. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes[J]. J Exp Bot, 2016, 67(4): 1191-1200. |
[54] | Phan NT, De Waele D, Lorieux M, et al. A hypersensitivity-like response to Meloidogyne graminicola in rice(Oryza sativa)[J]. Phytopathology, 2018, 108(4): 521-528. |
[55] | Feng H, Zhou CR, Zhu F, et al. Resistance analysis of the rice variety Huaidao 5 against root-knot nematode Meloidogyne graminicola[J]. J Integr Agric, 2023, 22(10): 3081-3089. |
[56] | Nguyen HT, Mantelin S, Ha CV, et al. Insights into the genetics of the Zhonghua 11 resistance to Meloidogyne graminicola and its molecular determinism in rice[J]. Front Plant Sci, 2022, 13: 854961. |
[57] | Beesa N, Jindapunnapat K, Chinnasri B, et al. Nematode development and changes in enzymatic defensive activity in rice plants upon Meloidogyne graminicola infection for preliminary screening of resistant cultivars[J]. Songklanakarin J Sci Technol, 2022, 44(1): 26-31. |
[58] | Zhan LP, Ding Z, Peng DL, et al. Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicola[J]. J Integr Agric, 2018, 17(3): 621-630. |
[59] |
Sato K, Kadota Y, Shirasu K. Plant immune responses to parasitic nematodes[J]. Front Plant Sci, 2019, 10: 1165.
doi: 10.3389/fpls.2019.01165 pmid: 31616453 |
[60] | Dash M, Somvanshi VS, Budhwar R, et al. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes[J]. Planta, 2021, 253(5): 108. |
[61] | Xiang C, Yang XP, Peng DL, et al. Proteome-wide analyses provide new insights into the compatible interaction of rice with the root-knot nematode Meloidogyne graminicola[J]. Int J Mol Sci, 2020, 21(16): 5640. |
[62] | Hada A, Dutta TK, Singh N, et al. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola[J]. PLoS One, 2020, 15(9): e0239085. |
[63] |
Shrestha R, Uzzo F, Wilson MJ, et al. Physiological and genetic mapping study of tolerance to root-knot nematode in rice[J]. New Phytol, 2007, 176(3): 665-672.
doi: 10.1111/j.1469-8137.2007.02185.x pmid: 17822410 |
[64] |
Galeng-Lawilao J, Kumar A, De Waele D. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola[J]. BMC Genet, 2018, 19(1): 53.
doi: 10.1186/s12863-018-0656-1 pmid: 30081817 |
[65] | Lahari Z, Ribeiro A, Talukdar P, et al. QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice(Oryza sativa L.)[J]. Euphytica, 2019, 215(7): 117. |
[66] | Wang XM, Cheng R, Xu DC, et al. MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode[J]. Nat Commun, 2023, 14(1): 3354. |
[67] |
Nahar K, Kyndt T, De Vleesschauwer D, et al. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice[J]. Plant Physiol, 2011, 157(1): 305-316.
doi: 10.1104/pp.111.177576 pmid: 21715672 |
[68] | Nahar K, Kyndt T, Hause B, et al. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway[J]. Mol Plant Microbe Interact, 2013, 26(1): 106-115. |
[69] |
Kyndt T, Nahar K, Haeck A, et al. Interplay between carotenoids, abscisic acid and jasmonate guides the compatible rice- Meloidogyne graminicola interaction[J]. Front Plant Sci, 2017, 8: 951.
doi: 10.3389/fpls.2017.00951 pmid: 28642770 |
[70] | Yimer HZ, Nahar K, Kyndt T, et al. Gibberellin antagonizes jasmonate-induced defense against Meloidogyne graminicola in rice[J]. New Phytol, 2018, 218(2): 646-660. |
[71] | Lahari Z, Ullah C, Kyndt T, et al. Strigolactones enhance root-knot nematode(Meloidogyne graminicola)infection in rice by antagonizing the jasmonate pathway[J]. New Phytol, 2019, 224(1): 454-465. |
[72] | Mei CS, Qi M, Sheng GY, et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Mol Plant Microbe Interact, 2006, 19(10): 1127-1137. |
[73] |
Koornneef A, Pieterse CMJ. Cross talk in defense signaling[J]. Plant Physiol, 2008, 146(3): 839-844.
doi: 10.1104/pp.107.112029 pmid: 18316638 |
[74] |
Dai DD, Xie CS, Zhou YY, et al. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization[J]. Nat Commun, 2023, 14(1): 7156.
doi: 10.1038/s41467-023-42700-w pmid: 37935661 |
[75] |
Rosso MN, Jones JT, Abad P. RNAi and functional genomics in plant parasitic nematodes[J]. Annu Rev Phytopathol, 2009, 47: 207-232.
doi: 10.1146/annurev.phyto.112408.132605 pmid: 19400649 |
[76] | Kong LG, Shi X, Chen D, et al. Host-induced silencing of a nematode chitin synthase gene enhances resistance of soybeans to both pathogenic Heterodera glycines and Fusarium oxysporum[J]. Plant Biotechnol J, 2022, 20(5): 809-811. |
[77] |
Lu H, McClung CR, Zhang C. Tick tock: circadian regulation of plant innate immunity[J]. Annu Rev Phytopathol, 2017, 55: 287-311.
doi: 10.1146/annurev-phyto-080516-035451 pmid: 28590878 |
[78] | Wang W, Barnaby JY, Tada Y, et al. Timing of plant immune responses by a central circadian regulator[J]. Nature, 2011, 470(7332): 110-114. |
[79] |
Li R, Llorca LC, Schuman MC, et al. ZEITLUPE in the roots of wild tobacco regulates jasmonate-mediated nicotine biosynthesis and resistance to a generalist herbivore[J]. Plant Physiol, 2018, 177(2): 833-846.
doi: 10.1104/pp.18.00315 pmid: 29720557 |
[80] | Zhou M, Wang W, Karapetyan S, et al. Redox rhythm reinforces the circadian clock to gate immune response[J]. Nature, 2015, 523(7561): 472-476. |
[1] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[2] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[3] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[4] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[5] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[6] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[7] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[8] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[9] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[10] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
[11] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[12] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[13] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[14] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[15] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||