生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 264-274.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0346
刘和兰1,2(), 陈泽慧1, 李明哲1, 周永雯1, 黎瑞1, 王勇祥1(
)
收稿日期:
2024-04-11
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
王勇祥,男,博士,讲师,研究方向:病原微生物耐药与防控;E-mail: 865681289@qq.com作者简介:
刘和兰,女,硕士,检验技师,研究方向:病原细菌耐药机制;E-mail: 1141259063@qq.com
基金资助:
LIU He-lan1,2(), CHEN Ze-hui1, LI Ming-zhe1, ZHOU Yong-wen1, LI Rui1, WANG Yong-xiang1(
)
Received:
2024-04-11
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】分析和研究临床碳青霉烯耐药高黏液肺炎克雷伯菌(Carbapenem-resistant hypermucoviscous Klebsiella pneumoniae, CR-HMKP)K2-ST375中前噬菌体的分布、可诱导前噬菌体的遗传结构及其编码基因特征,为深入研究CR-HMKP中前噬菌体的生物学功能奠定重要基础。【方法】 利用Prophage Hunter预测CR-HMKP K2-ST375中前噬菌体的分布,使用丝裂霉素C对前噬菌体进行诱导并通过环化引物进行验证。综合运用RAST等生物信息学软件对可诱导前噬菌体Prophage-4进行基因注释并对其编码的内溶素理化性质、结构特征及遗传信息进行分析。【结果】Prophage Hunter预测结果表明,CR-HMKP K2-ST375染色体上携带Prophage-1-Prophage-4共4个前噬菌体。经丝裂霉素C诱导,Prophage-4可从宿主染色体上剪切下来形成环化结构。序列分析结果表明,Prophage-4与宿主染色体存在40 bp同源重复序列。基因注释结果表明,Prophage-4的编码基因主要参与噬菌体结构和组装、DNA复制和调控、溶源周期以及裂解等生物学功能。Prophage-4编码的内溶素与肠杆菌科噬菌体P21的内溶素蛋白具有相同的保守结构域;在遗传进化上,二者具有较近的亲缘关系。系统发育树分析结果显示,Prophage-4与克雷伯菌烈性噬菌体BUCT541位于同一进化分支,表明Prophage-4具有潜在的裂解能力。【结论】 临床CR-HMKP K2-ST375中携带的Prophage-4经丝裂霉素C诱导,在40 bp同源重复序列介导下从宿主菌染色体上剪切下来形成环化结构;其编码的内溶素与噬菌体P21编码的内溶素蛋白密切相关。
刘和兰, 陈泽慧, 李明哲, 周永雯, 黎瑞, 王勇祥. 碳青霉烯耐药高黏液肺炎克雷伯菌K2-ST375中前噬菌体的诱导及环化结构分析[J]. 生物技术通报, 2024, 40(12): 264-274.
LIU He-lan, CHEN Ze-hui, LI Ming-zhe, ZHOU Yong-wen, LI Rui, WANG Yong-xiang. Induction and Circular Structure Analysis of Prophage in Carbapenem-resistant Hypermucoviscous Klebsiella pneumonia K2-ST375[J]. Biotechnology Bulletin, 2024, 40(12): 264-274.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 片段长度Fragment length/bp | 延伸时间Extension time/s |
---|---|---|---|
Prophage-1-诱导 Prophage-1-induction | F: TCGTTTCGCCGTTATTTTCAGC R: CTGATAGGACATCATCGGCAGTAA | 860 | 50 |
Prophage-2-诱导 Prophage-2-induction | F: ATGCAAAGACGCACACAACAG R: TAAGGCTGTAGGTGTTCCGCTCTA | 1 167 | 90 |
Prophage-3-诱导 Prophage-3-induction | F: AGCAGAGTTAGCTGTCTTTTTGACT R: TATGGTTCTGGGCTGGCAACATCA | 1 373 | 90 |
Prophage-4-诱导 Prophage-4-induction | F: AGCTCGCAGAAAGTCAGGTATTTG R: GTAGGTGTCGATATTGTAGCGTTCC | 1 680 | 90 |
Prophage-4-环化 Prophage-4-cyclization | F: ACATCGCCCGGATGGAACACTA R: CGGAACTTGCCACATTGAGAGGA | 704 | 50 |
表1 前噬菌体诱导及环化引物
Table 1 Primers used to induce prophages and verify its circular structure in this study
引物名称Primer name | 引物序列Primer sequence(5'-3') | 片段长度Fragment length/bp | 延伸时间Extension time/s |
---|---|---|---|
Prophage-1-诱导 Prophage-1-induction | F: TCGTTTCGCCGTTATTTTCAGC R: CTGATAGGACATCATCGGCAGTAA | 860 | 50 |
Prophage-2-诱导 Prophage-2-induction | F: ATGCAAAGACGCACACAACAG R: TAAGGCTGTAGGTGTTCCGCTCTA | 1 167 | 90 |
Prophage-3-诱导 Prophage-3-induction | F: AGCAGAGTTAGCTGTCTTTTTGACT R: TATGGTTCTGGGCTGGCAACATCA | 1 373 | 90 |
Prophage-4-诱导 Prophage-4-induction | F: AGCTCGCAGAAAGTCAGGTATTTG R: GTAGGTGTCGATATTGTAGCGTTCC | 1 680 | 90 |
Prophage-4-环化 Prophage-4-cyclization | F: ACATCGCCCGGATGGAACACTA R: CGGAACTTGCCACATTGAGAGGA | 704 | 50 |
图1 CR-HMKP K2-ST375中前噬菌体整合位置及Prophage-诱导引物扩增区域示意图 四种不同颜色分别代表四个前噬菌体。F1 - F4分别是Prophage-1 - Prophage-4诱导鉴定的正向引物;R1 - R4分别是Prophage-1 - Prophage-4诱导鉴定的反向引物
Fig. 1 Schematic diagram of the integration sites and Prophage-induced primer amplification region in CR-HMKP K2-ST375 The four different colors indicate the four prophages, respectively. F1 - F4 are the forward primers for Prophage-1 - Prophage-4 induced identification, respectively; R1 - R4 are the reverse primers for Prophage-1 - Prophage-4 induced identification, respectively
Prophage | Start | End | Length/bp | Score | GC content/% | Closest phage |
---|---|---|---|---|---|---|
Prophage-1 | 1829249 | 1869257 | 40009 | 0.81 | 49.59 | Klebsiella phage KPP5665-2 |
Prophage-2 | 3908143 | 3928480 | 20338 | 0.94 | 50.68 | Morganella phage IME1369_03 |
Prophage-3 | 3914937 | 3936414 | 21478 | 0.92 | 50.79 | Klebsiella phage 2b LV-2017 |
Prophage-4 | 3928593 | 3974191 | 45599 | 0.99 | 52.36 | Klebsiella phage 2 LV-2017 |
表2 CR-HMKP K2-ST375染色体中前噬菌体分布
Table 2 Distribution of prophages in the chromosome of CR-HMKP K2-ST375
Prophage | Start | End | Length/bp | Score | GC content/% | Closest phage |
---|---|---|---|---|---|---|
Prophage-1 | 1829249 | 1869257 | 40009 | 0.81 | 49.59 | Klebsiella phage KPP5665-2 |
Prophage-2 | 3908143 | 3928480 | 20338 | 0.94 | 50.68 | Morganella phage IME1369_03 |
Prophage-3 | 3914937 | 3936414 | 21478 | 0.92 | 50.79 | Klebsiella phage 2b LV-2017 |
Prophage-4 | 3928593 | 3974191 | 45599 | 0.99 | 52.36 | Klebsiella phage 2 LV-2017 |
图2 Prophage-4诱导及环化结构验证 A:丝裂霉素C诱导Prophage-4:M:DNA marker DL2000;1泳道:使用Prophage-4-诱导引物扩增菌上清;2泳道:使用管家基因phoE引物扩增菌上清;3泳道:阴性对照;B:Prophage-4环化鉴定:M:DNA marker DL2000;1泳道使用Prophage-4-环化引物扩增菌上清;2泳道使用管家基因phoE引物扩增菌上清;3泳道:阴性对照
Fig. 2 Induction and verification of circularization structure of Prophage-4 A: Prophage-4 induction by mitomycin C; M: DNA marker DL2000; lane 1: the Prophage-4-induction primers were used to amplify the bacterial supernatant; lane 2: the primer of phoE were used to amplify the bacterial supernatant; lane 3: negative control. B: Identification of circularization structure of Prophage-4; M: DNA marker DL2000; lane 1: the Prophage-4-cyclization primer were used to amplify the bacterial supernatant; lane 2: the primer of phoE were used to amplify the bacterial supernatant; lane 3: negative control
图3 Prophage-4环化结构形成示意图 第一个圈图表示整合有Prophage-4的Kp0179染色体,其中,蓝色为Prophage-4基因组,红色和黄色分表代表40 bp的同源重复序列HR1和HR2;其相邻的attL为左侧附着位点,attR为右侧附着位点。中间圈图表示Kp0179染色体上与Prophage-4基因组存在40 bp同源重复序列。右侧圈图表示Prophage-4从Kp0179染色体上剪切下来形成phage-4,绿色大圆圈表示剪切后的Kp0179染色体。虚线框中为Prophage-4的环化引物扩增区域
Fig. 3 Schematic diagram of Prophage-4 circular structure formation The first diagram shows the integration of Prophage-4 into the Kp0179 chromosome, where blue indicates the Prophage-4 genome, red and yellow respectively indicate the 40 bp homologous repeats sequences HR1 and HR2; the adjacent attL is the left attachment site, and attR is the right attachment site. The middle diagram shows the Kp0179 chromosome with the 40 bp homologous repeats sequences present in the Prophage-4 genome. The diagram on the right shows Prophage-4 being excised from the Kp0179 chromosome to form phage-4, with the large green circle representing the Kp0179 chromosome after excision. In the dotted box is an amplified region of the cyclization primer for Prophage-4
图4 CR-HMKP K2-ST375染色体中Prophage-4遗传结构 从内至外:第一圈为Prophage-4的基因组长度;第二圈为GC含量;第三圈为GC偏移量;最外圈代表Prophage-4的编码基因
Fig. 4 Genetic structure of Prophage-4 in the chromosome of CR-HMKP K2-ST375 From the inside to the outside: the first layer refers to the genome length of Prophage-4; the second layer refers to the GC content; the third layer refers to the GC skew; and the outermost layer refers to the coding genes of Prophage-4
理化信息Physicochemical information | 参数Parameter |
---|---|
氨基酸残基个数Number of amino acid residues | 163.00 |
理论分子质量 Theoretical molecular mass/Da | 18 029.81 |
理论等电点Theoretical isoelectric point | 9.67 |
消光系数Extinction coefficient | 1.90 |
甲硫氨酸个数Number of Methionine | 3.00 |
半胱氨酸个数Number of Cysteine | 4.00 |
不稳定系数Instability index | 31.14 |
表3 内溶素蛋白的理化性质
Table 3 Physicochemical properties of the endolysin protein
理化信息Physicochemical information | 参数Parameter |
---|---|
氨基酸残基个数Number of amino acid residues | 163.00 |
理论分子质量 Theoretical molecular mass/Da | 18 029.81 |
理论等电点Theoretical isoelectric point | 9.67 |
消光系数Extinction coefficient | 1.90 |
甲硫氨酸个数Number of Methionine | 3.00 |
半胱氨酸个数Number of Cysteine | 4.00 |
不稳定系数Instability index | 31.14 |
亚细胞定位 Subcellular localization | LocDB | PotLocDB | NNets | Pentamers | Integral |
---|---|---|---|---|---|
细胞质Cytoplasm | 0.00 | 0.00 | 0.27 | 0.34 | 1.08 |
细胞膜Cell membrane | 0.00 | 0.00 | 2.73 | 2.73 | 8.76 |
分泌蛋白 Secreted proteins | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
表4 内溶素蛋白的亚细胞定位
Table 4 Subcellular localization of the endolysin protein
亚细胞定位 Subcellular localization | LocDB | PotLocDB | NNets | Pentamers | Integral |
---|---|---|---|---|---|
细胞质Cytoplasm | 0.00 | 0.00 | 0.27 | 0.34 | 1.08 |
细胞膜Cell membrane | 0.00 | 0.00 | 2.73 | 2.73 | 8.76 |
分泌蛋白 Secreted proteins | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
图5 SignalP 4.1预测内溶素蛋白的信号肽 曲线的横坐标是序列,纵坐标是分值。紫、绿、蓝3种颜色分别表示剪切位点分值(C值)、信号肽分值(S值)、C值和S值的综合计分值(Y值);文本输出结果中,“NO”表示内溶素蛋白不包含信号肽序列
Fig. 5 Prediction of signal peptides in endolysin by SignalP 4.1 The horizontal axis of the curve indicates the sequence, and the vertical axis indicates the score. Purple, green, and blue colors indicate the cleavage site score(C-score), signal peptide score(S-score), and the combined score of C-score and S-score(Y-score), respectively. In the text output results, “NO” indicates that the endolysin does not contain a signal peptide sequence
图6 DeepTMHMM预测内溶素蛋白的跨膜区 曲线的横坐标是序列,纵坐标是概率。蓝色表示该蛋白在膜外的概率,黄色表示信号肽的概率
Fig. 6 Transmembrane domains prediction of endolysin by DeepTMHMM The horizontal axis of the curve represents the sequence, and the vertical axis represents the probabilitity. Blue indicates the probability of the protein being outside the membrane, while yellow indicates the probability of signal peptides
图7 NetPhos-3.1分析内溶素蛋白的磷酸化位点 横坐标是序列,纵坐标是磷酸化概率。红、绿、蓝、粉4种颜色分别表示丝氨酸(Serine)、苏氨酸(Threonine)、酪氨酸(Tyrosine)以及阈值(Threshold);当阈值大于0.5表示该位置氨基酸为磷酸化位点
Fig. 7 Analysis of the phosphorylation sites in endolysin using NetPhos-3.1 The horizontal axis refers to the sequence, while the vertical axis refers to the probability of phosphorylation. The four colors, red, green, blue, and pink, indicate serine, threonine, tyrosine, and the threshold, respectively. When the threshold exceeds 0.5, it indicates that the amino acid at that position is a phosphorylation site
图8 Phyre2预测内溶素蛋白的二级结构 第一行为序列位置:黄色为极性氨基酸:A(丙氨酸)、S(丝氨酸)、T(苏氨酸)、G(甘氨酸)及P(脯氨酸);绿色为疏水性氨基酸:M(蛋氨酸)、I(异亮氨酸)、L(亮氨酸)和V(缬氨酸);红色为荷电性氨基酸:K(赖氨酸)、R(精氨酸)、E(谷氨酸)、N(天冬酰胺)、D(天冬氨酸)、H(组氨酸)及Q(谷氨酰胺);紫色为芳香族的氨基酸:W(色氨酸)、Y(酪氨酸)、F(苯丙氨酸)及C(半胱氨酸);第二行为二级结构,绿色为α螺旋,蓝色为β折叠。第三行和第四行为置信度评估:红色表示高置信度9,蓝色为低置信度0,中间共划分10个等级
Fig. 8 Prediction of the secondary structure of the endolysin using Phyre2 The first line indicates the sequence positions: Yellow indicates polar amino acids: A(Alanine), S(Serine), T(Threonine), G(Glycine), and P(Proline); green indicates hydrophobic amino acids: M(Methionine), I(Isoleucine), L(Leucine), and V(Valine); red indicates charged amino acids: K(Lysine), R(Arginine), E(Glutamic acid), N(Asparagine), D(Aspartic acid), H(Histidine), and Q(Glutamine); purple indicates aromatic amino acids: W(Tryptophan), Y(Tyrosine), F(Phenylalanine), and C(Cysteine). The second line indicates the secondary structure, with green for α-helices and blue for β-sheets. The third and fourth lines are for confidence assessment: red indicates high confidence 9, blue indicates low confidence 0, with a total of 10 levels divided in between
图9 SWISS-MODEL预测内溶素蛋白的三维结构 螺旋表示α螺旋,片状箭头表示β折叠,线条表示无规卷曲
Fig. 9 Prediction the three-dimensional structure of the endolysin by SWISS-MODEL Helices indicate alpha helices, sheet-like arrows indicate beta sheets, and lines indicate random coils
图10 CD Search预测内溶素蛋白的保守结构域 第一行为序列位置;蓝色区域表示该氨基酸序列与溶菌酶超家族蛋白质完全匹配,其中深蓝色部分与endolysin R21-like 具有较高的匹配度;蓝色三角形表示该氨基酸为已注释的功能位点
Fig. 10 Conserved structural domains prediction of endolysin by CD Search The first line indicates the sequence position; the blue region indicates that this amino acid sequence completely matches with the lysozyme superfamily proteins, where the dark blue parts have a higher degree of match with endolysin R21-like; the blue triangles indicate that the amino acid is an annotated functional sites
Prophage | Size/kb | GC/% | Accession number(prophage locus) | Query cover/% | E Value | Per. ident/% |
---|---|---|---|---|---|---|
PKpKPR0928-4 | 44.6 | 49.76 | CP008831(1938828-1983501) | 0 | 7e-33 | 73.09 |
PKp4856-1 | 49.8 | 52.67 | OK490410 | 48 | 0.0 | 95.47 |
PKp4866-6 | 50.84 | 36.4 | OK490421 | 0 | 9e-17 | 79.67 |
PKpMGH 78578-1 | 36.7 | 50.85 | CP00064(1553547-1590292) | 0 | 6e-48 | 78.66 |
PKp342-1 | 36.2 | 49.65 | CP000964(2880748-2917023) | 0 | 7e-47 | 83.58 |
PKpKTCT2242-1 | 50.1 | 52.19 | CP002910(1037512-1087705) | 43 | 0.0 | 98.34 |
PKpCG43-1 | 39 | 50.73 | CP006648(1598758-1637846) | 7 | 0.0 | 97.91 |
PKpKP13-2 | 51.4 | 52.06 | CP003999(3181366-3232828) | 0 | 5e-55 | 82.35 |
PKpBAA-2146-2 | 52 | 53.06 | CP006659(1293925-1345941) | 26 | 0.0 | 92.94 |
PKpKP52-2 | 52.9 | 52.26 | FO834906(1503128-1556027) | 50 | 0.0 | 99.58 |
表5 Prophage-4同源性分析
Table 5 Homology analysis of Prophage-4
Prophage | Size/kb | GC/% | Accession number(prophage locus) | Query cover/% | E Value | Per. ident/% |
---|---|---|---|---|---|---|
PKpKPR0928-4 | 44.6 | 49.76 | CP008831(1938828-1983501) | 0 | 7e-33 | 73.09 |
PKp4856-1 | 49.8 | 52.67 | OK490410 | 48 | 0.0 | 95.47 |
PKp4866-6 | 50.84 | 36.4 | OK490421 | 0 | 9e-17 | 79.67 |
PKpMGH 78578-1 | 36.7 | 50.85 | CP00064(1553547-1590292) | 0 | 6e-48 | 78.66 |
PKp342-1 | 36.2 | 49.65 | CP000964(2880748-2917023) | 0 | 7e-47 | 83.58 |
PKpKTCT2242-1 | 50.1 | 52.19 | CP002910(1037512-1087705) | 43 | 0.0 | 98.34 |
PKpCG43-1 | 39 | 50.73 | CP006648(1598758-1637846) | 7 | 0.0 | 97.91 |
PKpKP13-2 | 51.4 | 52.06 | CP003999(3181366-3232828) | 0 | 5e-55 | 82.35 |
PKpBAA-2146-2 | 52 | 53.06 | CP006659(1293925-1345941) | 26 | 0.0 | 92.94 |
PKpKP52-2 | 52.9 | 52.26 | FO834906(1503128-1556027) | 50 | 0.0 | 99.58 |
图11 Prophage-4末端酶大亚基系统发育树 采用最大似然法构建CR-HMKP K2-ST375 Prophage-4系统进化树,分支上的数字为自展值
Fig. 11 Phylogenetic tree of Prophage-4 based on the terminase large subunit The maximum likelihood method was used to construct the CR-HMKP K2-ST375 Prophage-4 phylogenetic tree, and the numbers on the branches were the bootstrap value
图12 Prophage-4 内溶素系统发育树 采用最大似然法构建CR-HMKP K2-ST375 Prophage-4编码的endolysin系统进化树,分支上的数字为自展值
Fig. 12 Phylogenetic tree of Prophage-4 based on the endolysin The maximum likelihood method was used to construct the endolysin phylogenetic tree encoded by CR-HMKP K2-ST375 Prophage-4, and the numbers on the branches were the bootstrap value
[1] |
Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives[J]. J Intern Med, 2020, 287(3): 283-300.
doi: 10.1111/joim.13007 pmid: 31677303 |
[2] | Harada S, Ishii Y, Saga T, et al. Molecular epidemiology of Klebsiella pneumoniae K1 and K2 isolates in Japan[J]. Diagn Microbiol Infect Dis, 2018, 91(4): 354-359. |
[3] | Shen DX, Ma GN, Li CD, et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare blaCTX-M-24-harboring virulence plasmid[J]. Antimicrob Agents Chemother, 2019, 63(3): e02273-18. |
[4] | Lan P, Jiang Y, Zhou JC, et al. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae[J]. J Glob Antimicrob Resist, 2021, 25: 26-34. |
[5] | 陈学梅, 魏云林, 季秀玲. 前噬菌体研究进展[J]. 遗传, 2021, 43(3): 240-248. |
Chen XM, Wei YL, Ji XL. Research progress of prophages[J]. Hereditas(Beijing), 2021, 43(3): 240-248.
doi: 10.16288/j.yczz.20-355 pmid: 33724208 |
|
[6] |
Knezevic P, Voet M, Lavigne R. Prevalence of Pf1-like(pro)phage genetic elements among Pseudomonas aeruginosa isolates[J]. Virology, 2015, 483: 64-71.
doi: 10.1016/j.virol.2015.04.008 pmid: 25965796 |
[7] |
Mottawea W, Duceppe MO, Dupras AA, et al. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping[J]. Front Microbiol, 2018, 9: 836.
doi: 10.3389/fmicb.2018.00836 pmid: 29780368 |
[8] | Liang JR, Kou ZQ, Qin S, et al. Novel Yersinia enterocolitica prophages and a comparative analysis of genomic diversity[J]. Front Microbiol, 2019, 10: 1184. |
[9] | Kondo K, Kawano M, Sugai M. Distribution of antimicrobial resistance and virulence genes within the prophage-associated regions in nosocomial pathogens[J]. mSphere, 2021, 6(4): e0045221. |
[10] | Rahman MU, Wang WX, Sun QQ, et al. Endolysin, a promising solution against antimicrobial resistance[J]. Antibiotics, 2021, 10(11): 1277. |
[11] | Liu GJ, Zhang SY, Gao TT, et al. Identification of a novel broad-spectrum endolysin, Ply0643, with high antibacterial activity in mouse models of streptococcal bacteriaemia and mastitis[J]. Res Vet Sci, 2022, 143: 41-49. |
[12] |
Wang CJ, Shi SC, Wei MJ, et al. Characterization of a novel broad-spectrum endolysin PlyD4 encoded by a highly conserved prophage found in Aeromonas hydrophila ST251 strains[J]. Appl Microbiol Biotechnol, 2022, 106(2): 699-711.
doi: 10.1007/s00253-021-11752-7 pmid: 34985567 |
[13] | Kim K, Islam MM, Kim D, et al. Characterization of a novel phage ΦAb1656-2 and its endolysin with higher antimicrobial activity against multidrug-resistant Acinetobacter baumannii[J]. Viruses, 2021, 13(9): 1848. |
[14] |
Maciejewska B, Roszniowski B, Espaillat A, et al. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes[J]. Appl Microbiol Biotechnol, 2017, 101(2): 673-684.
doi: 10.1007/s00253-016-7928-3 pmid: 27766357 |
[15] | Song WC, Sun HX, Zhang C, et al. Prophage Hunter: an integrative hunting tool for active prophages[J]. Nucleic Acids Res, 2019, 47(W1): W74-W80. |
[16] | Lorenz N, Reiger M, Toro-Nahuelpan M, et al. Identification and initial characterization of prophages in Vibrio campbellii[J]. PLoS One, 2016, 11(5): e0156010. |
[17] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[18] | Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5): 354-365. |
[19] | 刘文才, 钱敏桦, 潘灵婷, 等. 一株枯草芽孢杆菌原噬菌体Bsu-yong1的基因组分析[J]. 微生物学报, 2023, 63(10):3905-3922. |
Liu WC, Qian MH, Pan LT, et al. Genomic analysis of a Bacillus subtilis prophage vB_Bsu-yong1[J]. Acta Microbiologica Sinica, 2023, 63(10):3905-3922. | |
[20] |
Shen JT, Zhou JJ, Xu YP, et al. Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258[J]. Genomics, 2020, 112(1): 998-1010.
doi: S0888-7543(18)30722-5 pmid: 31220585 |
[21] |
Filipiak M, Łoś JM, Łoś M. Efficiency of induction of Shiga-toxin lambdoid prophages in Escherichia coli due to oxidative and antibiotic stress depends on the combination of prophage and the bacterial strain[J]. J Appl Genet, 2020, 61(1): 131-140.
doi: 10.1007/s13353-019-00525-8 pmid: 31808108 |
[22] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer[J]. Bioinformatics, 2007, 23(6): 673-679.
doi: 10.1093/bioinformatics/btm009 pmid: 17237039 |
[23] |
Feiner R, Argov T, Rabinovich L, et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria[J]. Nat Rev Microbiol, 2015, 13(10): 641-650.
doi: 10.1038/nrmicro3527 pmid: 26373372 |
[24] |
Olorunniji FJ, McPherson AL, Rosser SJ, et al. Control of serine integrase recombination directionality by fusion with the directionality factor[J]. Nucleic Acids Res, 2017, 45(14): 8635-8645.
doi: 10.1093/nar/gkx567 pmid: 28666339 |
[25] |
Qin WN, Li DF, Xu LH, et al. Complete genome analysis of an active prophage of Vibrio alginolyticus[J]. Arch Virol, 2021, 166(3): 891-896.
doi: 10.1007/s00705-020-04941-8 pmid: 33454862 |
[26] | Blankschien MD, Potrykus K, Grace E, et al. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription[J]. PLoS Genet, 2009, 5(1): e1000345. |
[27] |
Mahdi AA, Sharples GJ, Mandal TN, et al. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82[J]. J Mol Biol, 1996, 257(3): 561-573.
pmid: 8648624 |
[28] | Palacios M, Miner TA, Frederick DR, et al. Identification of two regulators of virulence that are conserved in Klebsiella pneumoniae classical and hypervirulent strains[J]. mBio, 2018, 9(4): e01443-18. |
[29] |
Beggs GA, Brennan RG, Arshad M. MarR family proteins are important regulators of clinically relevant antibiotic resistance[J]. Protein Sci, 2020, 29(3): 647-653.
doi: 10.1002/pro.3769 pmid: 31682303 |
[30] | Chang RYK, Nang SC, Chan HK, et al. Novel antimicrobial agents for combating antibiotic-resistant bacteria[J]. Adv Drug Deliv Rev, 2022, 187: 114378. |
[31] |
Sun QG, Kuty GF, Arockiasamy A, et al. Regulation of a muralytic enzyme by dynamic membrane topology[J]. Nat Struct Mol Biol, 2009, 16(11): 1192-1194.
doi: 10.1038/nsmb.1681 pmid: 19881499 |
[32] | Pu MF, Li YH, Han PJ, et al. Genomic characterization of a new phage BUCT541 against Klebsiella pneumoniae K1-ST23 and efficacy assessment in mouse and Galleria mellonella larvae[J]. Front Microbiol, 2022, 13: 950737. |
[1] | 饶峻, 赵晨, 李端华, 廖豪, 黄加雨, 王辂. 自诱导策略在麦角硫因生物合成中的应用[J]. 生物技术通报, 2025, 41(1): 333-346. |
[2] | 王超, 白如仟, 管俊梅, 罗稷林, 何雪姣, 迟绍轶, 马玲. 马铃薯块茎变绿中StHY5对龙葵素合成的促进作用[J]. 生物技术通报, 2024, 40(9): 113-122. |
[3] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
[4] | 宋倩娜, 段永红, 冯瑞云. CRISPR/Cas9介导的高效四倍体马铃薯试管薯基因编辑体系的建立[J]. 生物技术通报, 2024, 40(9): 33-41. |
[5] | 张小妹, 周南伶, 张赛行, 王超, 沈玉龙, 管俊梅, 马玲. 马铃薯StDREBs基因的克隆及其表达分析[J]. 生物技术通报, 2024, 40(9): 42-50. |
[6] | 毋舒宁, 苏永平, 李冬雪, 柏映国, 刘波, 张志伟. 一种谷氨酸棒杆菌4-异丙基苯甲酸诱导型启动子的设计与应用[J]. 生物技术通报, 2024, 40(7): 108-116. |
[7] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
[8] | 阿丽亚·外力, 陈永坤, 克拉热木·克里木江, 王宝庆, 陈凌娜. 核桃SPL基因家族的系统进化和表达分析[J]. 生物技术通报, 2024, 40(6): 180-189. |
[9] | 华炫, 田博雯, 周欣彤, 江梓涵, 王诗琦, 黄倩慧, 张健, 陈艳红. 旱柳SmERF B3-45的克隆及耐盐功能研究[J]. 生物技术通报, 2024, 40(12): 124-135. |
[10] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[11] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[12] | 陈治民, 李翠, 韦继天, 李昕然, 刘峄, 郭强. 绿原酸生物合成调控及其应用研究进展[J]. 生物技术通报, 2024, 40(1): 57-71. |
[13] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[14] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[15] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||