生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 34-44.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0361
王晶(), 张晓磊, 白玉, 盛宇欣, 关海涛(
), 温洪涛(
)
收稿日期:
2024-04-15
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
温洪涛,男,博士,副研究员,研究方向:转基因农作物产品成分检测技术和安全性评价; E-mail: wen0891@163.com;作者简介:
王晶,女,博士,助理研究员,研究方向:生物技术产品检测技术和稻米品质形成机理; E-mail: buyijingjing@163.com
基金资助:
WANG Jing(), ZHANG Xiao-lei, BAI Yu, SHENG Yu-xin, GUAN Hai-tao(
), WEN Hong-tao(
)
Received:
2024-04-15
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】为解决不同转化体扩增体系和反应条件不统一问题,建立通用PCR检测体系,进而提升转化体鉴定效率。【方法】通过收集国内外转基因材料的转化体特异性PCR鉴定方法,比较其扩增体系和反应条件的差异,选择其中使用频率最高的参数作为通用参数。利用不同玉米转基因材料,验证转化体特异性通用PCR定性检测方法。【结果】建立通用普通PCR扩增体系:总体积25.0 µL、25 mmol/L MgCl2溶液1.5 µL、2.5 mmol/L dNTPs混合溶液2.0 µL、靶标和内参上下游引物终浓度0.4 µmol/L、Taq DNA聚合酶0.025 U/µL、25 mg/L DNA模板2.0 µL,LOD 0.1%;反应条件:94℃预变性5 min、94℃变性30 s、58℃退火30 s,72℃延伸30 s、共进行35次循环、72℃终延伸7 min。通用实时荧光PCR定性鉴定扩增体系:总体积20.0 µL、25 mmol/L MgCl2溶液2.0 µL、dNTPs混合溶液(各2.5 mmol/L)1.6 µL、靶标和内参上下游引物和探针终浓度0.4 µmol/L、Taq DNA聚合酶0.04 U/µL、25 mg/L DNA模板2.5 µL,LOD 0.1%;反应条件为95℃预变性5 min、95℃起始变性15 s、60℃退火延伸60 s、40个循环。【结论】不同转化体材料可以利用本研究建立的通用PCR扩增体系和反应条件进行检测。
王晶, 张晓磊, 白玉, 盛宇欣, 关海涛, 温洪涛. 不同玉米转化体通用PCR检测体系建立[J]. 生物技术通报, 2024, 40(12): 34-44.
WANG Jing, ZHANG Xiao-lei, BAI Yu, SHENG Yu-xin, GUAN Hai-tao, WEN Hong-tao. Establishment of a Universal PCR Detection System for Different Maize Events[J]. Biotechnology Bulletin, 2024, 40(12): 34-44.
物种 Species | 转化体 Events | 检出限 LOD | 25 mmol/L氯化镁25 mmol/L MgCl2/µL | 10 µmol/L脱氧核糖核苷三磷酸 10 μmol/L dNTP /µL | 引物终浓度 Final concentration of primers /(µmol·L-1) | DNA聚合酶 DNA polymerase /(U·µL-1) | 25 mg/L模板 25 mg/L template /µL | 终体积 Final volume(ddH2O)/µL |
---|---|---|---|---|---|---|---|---|
玉米Maize(Zea mays L.) | IE09S034, 12-5 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 4 | 25 |
5307, C0010.3.7, GH5112E-117C, Bt506 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
DBN9858, MON87427, 4114, DBN9936, VCO-Ø1981-5 | 0.10% | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
C0010.1.3 | 0.10% | 1.5 | 0.2 | 0.6 | 0.025 | 2 | 25 | |
MON88017 | - | 2.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
59122, BVLA430101, BVLA430101, MON89034 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
TC1507, MON863, GA21, NK603, T25, BT10, CBH351 | - | 2.5 | 0.2 | 0.5 | 0.025 | 1 | 50(31.7) | |
MIR604 | - | 2.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
MON87460, DAS-40278-9, BT11 | 1 g/kg | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
3272, BT176, MON810 | 1 g/kg | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
MIR162 | 1 g/kg | 1.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
CC-2 | 20拷贝 | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
G1105E-823C | 20拷贝 | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
C0010.3.1 | 39拷贝 | 1.5 | 0.2 | 0.6 | 0.025 | 4 | 25 | |
C0030.2.4, C0030.2.5 | 40拷贝 | 1.5 | 0.25 | 0.3 | 0.025 | 4 | 25 | |
大豆Soybean(Glycine max L.) | MON89788, A2704-12 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 |
SHZD32-1 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
MON87701, SYHT0H2 | 0.10% | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
MON87708 | 0.10% | 1.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
DAS68416-4 | 0.10% | 1.5 | 0.2 | 0.8 | 0.025 | 2 | 25 | |
DAS-444Ø6-6 | - | 1.5 | 0.2 | 0.2 | 0.050 | 2 | 25 | |
A5547-127 | - | 2.5 | 0.2 | 0.4 | 0.050 | 2 | 25 | |
DP356043, DP305423, FG72, CV127 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
GTS40-3-2 | 1 g/kg | 2.0 | 0.2 | 0.4 | 0.025 | 1 | 25 | |
MON87705, MON87769 | 1 g/kg | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
棉花Cotton(Gossypium hirsutum L.) | LLcotton25, COT102 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 |
GHB614 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
Bt, MON88913, MON1598, MON1445 | - | 2.5 | 0.2 | 0.4 | 0.05 | 2 | 25 | |
油菜Rape(Brassica napus L.) | MON88302 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 50 |
73496 | 0.05% | 1.5 | 0.2 | 0.6 | 0.025 | 4 | 25 | |
Topas19/2 | - | 2.5 | 0.2 | 0.25 | 0.05 | 1 | 50 | |
RF1, T45, Oxy-235 | - | 2.5 | 0.2 | 0.5 | 0.025 | 1 | 50 | |
RF3, RF2, GT73, MS1 | - | 2.5 | 0.2 | 0.5 | 0.05 | 1 | 50 | |
使用频率最高的扩增体系 The most frequently used amplification system | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | ||
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 47/70 | 68/70 | 29/70 | 59/70 | 48/70 | 54/70 |
表1 不同农作物转化体普通PCR鉴定方法扩增体系比较
Table 1 Comparison of amplification systems for common PCR identification methods of different crop events
物种 Species | 转化体 Events | 检出限 LOD | 25 mmol/L氯化镁25 mmol/L MgCl2/µL | 10 µmol/L脱氧核糖核苷三磷酸 10 μmol/L dNTP /µL | 引物终浓度 Final concentration of primers /(µmol·L-1) | DNA聚合酶 DNA polymerase /(U·µL-1) | 25 mg/L模板 25 mg/L template /µL | 终体积 Final volume(ddH2O)/µL |
---|---|---|---|---|---|---|---|---|
玉米Maize(Zea mays L.) | IE09S034, 12-5 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 4 | 25 |
5307, C0010.3.7, GH5112E-117C, Bt506 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
DBN9858, MON87427, 4114, DBN9936, VCO-Ø1981-5 | 0.10% | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
C0010.1.3 | 0.10% | 1.5 | 0.2 | 0.6 | 0.025 | 2 | 25 | |
MON88017 | - | 2.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
59122, BVLA430101, BVLA430101, MON89034 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
TC1507, MON863, GA21, NK603, T25, BT10, CBH351 | - | 2.5 | 0.2 | 0.5 | 0.025 | 1 | 50(31.7) | |
MIR604 | - | 2.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
MON87460, DAS-40278-9, BT11 | 1 g/kg | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
3272, BT176, MON810 | 1 g/kg | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
MIR162 | 1 g/kg | 1.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
CC-2 | 20拷贝 | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
G1105E-823C | 20拷贝 | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
C0010.3.1 | 39拷贝 | 1.5 | 0.2 | 0.6 | 0.025 | 4 | 25 | |
C0030.2.4, C0030.2.5 | 40拷贝 | 1.5 | 0.25 | 0.3 | 0.025 | 4 | 25 | |
大豆Soybean(Glycine max L.) | MON89788, A2704-12 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 |
SHZD32-1 | 0.10% | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
MON87701, SYHT0H2 | 0.10% | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
MON87708 | 0.10% | 1.5 | 0.2 | 0.5 | 0.025 | 2 | 25 | |
DAS68416-4 | 0.10% | 1.5 | 0.2 | 0.8 | 0.025 | 2 | 25 | |
DAS-444Ø6-6 | - | 1.5 | 0.2 | 0.2 | 0.050 | 2 | 25 | |
A5547-127 | - | 2.5 | 0.2 | 0.4 | 0.050 | 2 | 25 | |
DP356043, DP305423, FG72, CV127 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
GTS40-3-2 | 1 g/kg | 2.0 | 0.2 | 0.4 | 0.025 | 1 | 25 | |
MON87705, MON87769 | 1 g/kg | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | |
棉花Cotton(Gossypium hirsutum L.) | LLcotton25, COT102 | - | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 |
GHB614 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 25 | |
Bt, MON88913, MON1598, MON1445 | - | 2.5 | 0.2 | 0.4 | 0.05 | 2 | 25 | |
油菜Rape(Brassica napus L.) | MON88302 | - | 1.5 | 0.2 | 0.2 | 0.025 | 2 | 50 |
73496 | 0.05% | 1.5 | 0.2 | 0.6 | 0.025 | 4 | 25 | |
Topas19/2 | - | 2.5 | 0.2 | 0.25 | 0.05 | 1 | 50 | |
RF1, T45, Oxy-235 | - | 2.5 | 0.2 | 0.5 | 0.025 | 1 | 50 | |
RF3, RF2, GT73, MS1 | - | 2.5 | 0.2 | 0.5 | 0.05 | 1 | 50 | |
使用频率最高的扩增体系 The most frequently used amplification system | 1.5 | 0.2 | 0.4 | 0.025 | 2 | 25 | ||
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 47/70 | 68/70 | 29/70 | 59/70 | 48/70 | 54/70 |
物种 Species | 转化体 Events | 预变性 Pre-denaturation | 变性 Denaturation | 退火 Annealing | 72℃延伸 Extension at 72℃/s | 72℃终延伸 Final extension at 72℃/s |
---|---|---|---|---|---|---|
玉米 Maize(Zea mays L.) | 5307, MON87427, 4114, C0010.3.7, GH5112E-117C, Bt506, C0010.1.3, CC-2, DBN9858 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 300 |
MON89034, C0010.3.1, MON87460, BT176, MON810, 12-5, VCO-Ø1981-5, G1105E-823C | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
BVLA430101, BVLA430101 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 420 | |
TC1507, MON863, GA21, NK603, T25, BT10, CBH351, 59122, MON88017, MIR604, IE09S034, DBN9936, C0030.2.4, C0030.2.5 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
MIR162, 3272 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
DAS-40278-9, BT11 | 94℃, 300 s | 94℃, 30 s | 56℃, 30 s | 30 | 420 | |
大豆 Soybean(Glycine max L.) | MON89788 | 94℃, 180 s | 94℃, 30 s | 58℃, 30 s | 30 | 300 |
A2704-12, A5547-127 | 94℃, 300 s | 94℃, 30 s | 56℃, 30 s | 30 | 420 | |
DP356043 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
DP305423, GTS40-3-2, MON87705, MON87769, MON87708 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 420 | |
MON87701 | 95℃, 180 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
FG72 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
SHZD32-1 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 300 | |
CV127, DAS68416-4 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 420 | |
SYHT0H2 | 95℃, 300 s | 95℃, 30 s | 58℃, 45 s | 45 | 420 | |
DAS-444Ø6-6 | 95℃, 420 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
棉花 Cotton(Gossypium hirsutum L.) | MON1445 | 94℃, 300 s | 94℃, 30 s | 55℃, 30 s | 30 | 420 |
LLcotton25 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
Bt | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 120 | |
MON88913 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 420 | |
MON1598 | 95℃, 300 s | 95℃, 30 s | 56℃, 30 s | 30 | 420 | |
GHB614, COT102 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 600 | |
油菜 Rape(Brassica napus L.) | MS1, RF1 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 45 | 420 |
RF3 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 45 | 600 | |
RF2 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
GT73 | 94℃, 300 s | 94℃, 30 s | 59℃, 30 s | 40 | 600 | |
T45 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 600 | |
Oxy-235 | 94℃, 300 s | 94℃, 30 s | 61℃, 30 s | 45 | 420 | |
Topas19/2 | 94℃, 300 s | 95℃, 30 s | 56℃, 30 s | 30 | 120 | |
MON88302 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
73496 | 95℃, 300 s | 95℃, 30 s | 60℃, 30 s | 30 | 120 | |
使用频率最高的反应条件 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
使用频率最高的反应条件占比 | 40/70 | 59/70 | 49/70 | 63/70 | 48/70 |
表2 不同农作物转化体普通PCR鉴定方法反应条件比较
Table 2 Comparison of reaction conditions of common PCR identification methods of different crop events
物种 Species | 转化体 Events | 预变性 Pre-denaturation | 变性 Denaturation | 退火 Annealing | 72℃延伸 Extension at 72℃/s | 72℃终延伸 Final extension at 72℃/s |
---|---|---|---|---|---|---|
玉米 Maize(Zea mays L.) | 5307, MON87427, 4114, C0010.3.7, GH5112E-117C, Bt506, C0010.1.3, CC-2, DBN9858 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 300 |
MON89034, C0010.3.1, MON87460, BT176, MON810, 12-5, VCO-Ø1981-5, G1105E-823C | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
BVLA430101, BVLA430101 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 420 | |
TC1507, MON863, GA21, NK603, T25, BT10, CBH351, 59122, MON88017, MIR604, IE09S034, DBN9936, C0030.2.4, C0030.2.5 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
MIR162, 3272 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
DAS-40278-9, BT11 | 94℃, 300 s | 94℃, 30 s | 56℃, 30 s | 30 | 420 | |
大豆 Soybean(Glycine max L.) | MON89788 | 94℃, 180 s | 94℃, 30 s | 58℃, 30 s | 30 | 300 |
A2704-12, A5547-127 | 94℃, 300 s | 94℃, 30 s | 56℃, 30 s | 30 | 420 | |
DP356043 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
DP305423, GTS40-3-2, MON87705, MON87769, MON87708 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 420 | |
MON87701 | 95℃, 180 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
FG72 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
SHZD32-1 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 300 | |
CV127, DAS68416-4 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 420 | |
SYHT0H2 | 95℃, 300 s | 95℃, 30 s | 58℃, 45 s | 45 | 420 | |
DAS-444Ø6-6 | 95℃, 420 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
棉花 Cotton(Gossypium hirsutum L.) | MON1445 | 94℃, 300 s | 94℃, 30 s | 55℃, 30 s | 30 | 420 |
LLcotton25 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
Bt | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 120 | |
MON88913 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 420 | |
MON1598 | 95℃, 300 s | 95℃, 30 s | 56℃, 30 s | 30 | 420 | |
GHB614, COT102 | 95℃, 300 s | 95℃, 30 s | 58℃, 30 s | 30 | 600 | |
油菜 Rape(Brassica napus L.) | MS1, RF1 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 45 | 420 |
RF3 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 45 | 600 | |
RF2 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
GT73 | 94℃, 300 s | 94℃, 30 s | 59℃, 30 s | 40 | 600 | |
T45 | 94℃, 300 s | 94℃, 30 s | 60℃, 30 s | 30 | 600 | |
Oxy-235 | 94℃, 300 s | 94℃, 30 s | 61℃, 30 s | 45 | 420 | |
Topas19/2 | 94℃, 300 s | 95℃, 30 s | 56℃, 30 s | 30 | 120 | |
MON88302 | 95℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 120 | |
73496 | 95℃, 300 s | 95℃, 30 s | 60℃, 30 s | 30 | 120 | |
使用频率最高的反应条件 | 94℃, 300 s | 94℃, 30 s | 58℃, 30 s | 30 | 420 | |
使用频率最高的反应条件占比 | 40/70 | 59/70 | 49/70 | 63/70 | 48/70 |
物种 Species | 转化体 Events | 检出限 LOD | 25 mmol/L MgCl2/µL | 10 mmol/L dNTP/µL | 引物终浓度 Final concentration of primers/(µmol·L-1) | 探针终浓度 Final concentration of probes /(µmol·L-1) | DNA聚合酶 DNA polymerase /(U·µL-1) | 25 mg/L模板 25 mg/L template/µL | 终体积 Final volume /µL |
---|---|---|---|---|---|---|---|---|---|
玉米 Maize(Zea mays L.) | BVLA430101 | - | 2.5 | 0.2 | 0.4 | 0.2 | 0.04 | 2 | 50 |
12-5 | 0.05% | 1.2 | 0.6 | 0.8 | 0.4 | 0.04 | 5 | 20 | |
4114 | 0.05% | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
C0030.2.4, C0030.2.5 | 20拷贝 | 1.5 | 0.25 | 0.4 | 0.2 | 0.025 | 4 | 25 | |
C0010.3.1 | 9.8拷贝 | 2.5 | 0.2 | 1 | 0.5 | 0.04 | 5 | 20 | |
CC-2 | 10拷贝 | 2.5 | 0.2 | 1 | 0.5 | 0.04 | 5 | 20 | |
G1105E-823C | 10拷贝 | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
大豆 Soybean(Glycine max L.) | SHZD32-1 | 0.05% | 1.5 | 0.2 | 0.4 | 0.3 | 0.025 | 2.5 | 25 |
MON87708 | 0.05% | 1.5 | 0.3 | 0.3 | 0.15 | 0.04 | 2.5 | 20 | |
SYHT0H2 | 0.05%, Ct≤36 | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
MON87701 | 0.05% | 2.5 | 0.3 | 0.6 | 0.4 | 0.04 | 2.5 | 20 | |
棉花 Cotton(Gossypium hirsutum L.) | COT102 | - | 1.5 | 0.2 | 0.4 | 0.2 | 0.04 | 2 | 25 |
油菜 Rape(Brassica napus L.) | 73496 | 0.03% | 2.5 | 0.2 | 1.0 | 0.5 | 0.04 | 5 | 20 |
使用频率最高的扩增体系 The most frequently used amplification system | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | ||
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 8/14 | 9/14 | 8/14 | 5/14 | 11/14 | 6/14 | 9/14 |
表3 不同农作物转化体实时荧光PCR定性鉴定方法扩增体系比较
Table 3 Comparison of amplification systems of real-time fluorescent PCR methods for qualitative identification of different crop events
物种 Species | 转化体 Events | 检出限 LOD | 25 mmol/L MgCl2/µL | 10 mmol/L dNTP/µL | 引物终浓度 Final concentration of primers/(µmol·L-1) | 探针终浓度 Final concentration of probes /(µmol·L-1) | DNA聚合酶 DNA polymerase /(U·µL-1) | 25 mg/L模板 25 mg/L template/µL | 终体积 Final volume /µL |
---|---|---|---|---|---|---|---|---|---|
玉米 Maize(Zea mays L.) | BVLA430101 | - | 2.5 | 0.2 | 0.4 | 0.2 | 0.04 | 2 | 50 |
12-5 | 0.05% | 1.2 | 0.6 | 0.8 | 0.4 | 0.04 | 5 | 20 | |
4114 | 0.05% | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
C0030.2.4, C0030.2.5 | 20拷贝 | 1.5 | 0.25 | 0.4 | 0.2 | 0.025 | 4 | 25 | |
C0010.3.1 | 9.8拷贝 | 2.5 | 0.2 | 1 | 0.5 | 0.04 | 5 | 20 | |
CC-2 | 10拷贝 | 2.5 | 0.2 | 1 | 0.5 | 0.04 | 5 | 20 | |
G1105E-823C | 10拷贝 | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
大豆 Soybean(Glycine max L.) | SHZD32-1 | 0.05% | 1.5 | 0.2 | 0.4 | 0.3 | 0.025 | 2.5 | 25 |
MON87708 | 0.05% | 1.5 | 0.3 | 0.3 | 0.15 | 0.04 | 2.5 | 20 | |
SYHT0H2 | 0.05%, Ct≤36 | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | |
MON87701 | 0.05% | 2.5 | 0.3 | 0.6 | 0.4 | 0.04 | 2.5 | 20 | |
棉花 Cotton(Gossypium hirsutum L.) | COT102 | - | 1.5 | 0.2 | 0.4 | 0.2 | 0.04 | 2 | 25 |
油菜 Rape(Brassica napus L.) | 73496 | 0.03% | 2.5 | 0.2 | 1.0 | 0.5 | 0.04 | 5 | 20 |
使用频率最高的扩增体系 The most frequently used amplification system | 2.5 | 0.2 | 0.4 | 0.4 | 0.04 | 2.5 | 20 | ||
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 8/14 | 9/14 | 8/14 | 5/14 | 11/14 | 6/14 | 9/14 |
物种 Species | 转化体 Events | 95℃预变性 Pre-denaturation at 95℃/s | 95℃起始变性 Initial denaturation at 95℃/s | 60℃退火延伸Annealing and extension at 60℃/s |
---|---|---|---|---|
玉米 Maize(Zea mays L.) | BVLA430101 | 300 | 5 | 30 |
12-5, 4114, C0030.2.4, CC-2, G1105E-823C | 300 | 15 | 60 | |
C0030.2.5 | 600 | 15 | 60 | |
C0010.3.1 | 120 | 5 | 34 | |
大豆 Soybean(Glycine max L.) | SHZD32-1, SYHT0H2 | 300 | 15 | 60 |
MON87708, MON87701 | 600 | 15 | 60 | |
棉花 Cotton(Gossypium hirsutum L.) | COT102 | 300 | 15 | 60 |
油菜 Rape(Brassica napus L.) | 73496 | 120 | 5 | 34 |
使用频率最高的反应条件 | 300 | 15 | 60 | |
使用频率最高的反应条件占比 | 9/14 | 11/14 | 11/14 |
表4 不同农作物转化体实时荧光PCR定性鉴定反应条件比较
Table 4 Comparison of reaction conditions of real-time fluorescent PCR methods for qualitative identification of different crop events
物种 Species | 转化体 Events | 95℃预变性 Pre-denaturation at 95℃/s | 95℃起始变性 Initial denaturation at 95℃/s | 60℃退火延伸Annealing and extension at 60℃/s |
---|---|---|---|---|
玉米 Maize(Zea mays L.) | BVLA430101 | 300 | 5 | 30 |
12-5, 4114, C0030.2.4, CC-2, G1105E-823C | 300 | 15 | 60 | |
C0030.2.5 | 600 | 15 | 60 | |
C0010.3.1 | 120 | 5 | 34 | |
大豆 Soybean(Glycine max L.) | SHZD32-1, SYHT0H2 | 300 | 15 | 60 |
MON87708, MON87701 | 600 | 15 | 60 | |
棉花 Cotton(Gossypium hirsutum L.) | COT102 | 300 | 15 | 60 |
油菜 Rape(Brassica napus L.) | 73496 | 120 | 5 | 34 |
使用频率最高的反应条件 | 300 | 15 | 60 | |
使用频率最高的反应条件占比 | 9/14 | 11/14 | 11/14 |
物种 Species | 转化体 Events | 检出限 LOD≤(%) | 定量限 LOQ≤(%) | 靶标 Target gene | 内参 Reference gene | 25 mg/L template/ng | 终体积 Final volume/ µL |
---|---|---|---|---|---|---|---|
引物/探针浓度 Concentration of primers/probe /(µmol·L-1) | |||||||
玉米 Maize(Zea mays L.) | TC1507 | - | 0.08 | 0.3/0.3 | 0.15/0.18 | 200 | 25 |
T25 | 0.045 | 0.09 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
MON89034 | 0.04 | 0.085 | 0.45/0.3 | 0.1/0.16 | 200 | 50/25 | |
MON88017 | 0.045 | 0.09 | 0.15/0.3 | 0.05/0.16 | 200 | 50 | |
MON87460 | 0.04 | 0.085 | 0.6/0.3 | 0.25/0.16 | 200 | 50/25 | |
MON863 | - | - | 0.15/0.15 | 0.05/0.05 | 280 | 50 | |
MON810 | 0. 1 | 0. 1 | 0.3/0.3 | 0.18/0.18 | 2.3-150 | 25 | |
MIR604 | 0.045 | 0.09 | 0.6/0.3 | 0.2/0.2 | 200 | 25 | |
NK603 | 0.05 | 0.10 | 0.15/0.15 | 0.05/0.05 | 300 | 50 | |
MIR162 | 0.04 | 0.08 | 0.3/0.3 | 0.15/0.2 | 250 | 25 | |
LY038 | 0.05 | 0.09 | 0.15/0.3 | 0.05/0.16 | 200 | 50/25 | |
GA21 | 0.04 | 0.04 | 0.9/0.3 | 0.2/0.2 | 250 | 25 | |
E3272 | 0.04 | 0.09 | 0.9/0.3 | 0.2/0.2 | 250 | 25 | |
DAS-40278-9 | 0.04 | 0.08 | 0.35/0.3 | 0.15/0.18 | 5 µL | 25 | |
BT176 | 0.01 | 0.01 | 0.6/0.3 | 0.2/0.2 | 250 | 25 | |
BT11 | 0.04 | 0.08 | 0.2/0.3 | 0.15/0.3 | 250 | 25 | |
98140 | 0.04 | 0.08 | 0.5/0.4 | 0.2/0.15 | 200/100 | 25 | |
大豆 Soybean(Glycine max L.) | DP305423 | 0.04 | 0.08 | 0.5/0.55 | 0.22/0.1 | 100 | 25 |
MON87708, MON87701 | 0.04 | 0.085 | 0.6/0.15 | 0.25/0.05 | 200 | 50 | |
MON89788 | 0.045 | 0.09 | 0.15/0.15 | 0.05/0.05 | 200 | 50 | |
DP356043 | 0.04 | 0.08 | 0.75/0.65 | 0.20/0.18 | 100 | 25 | |
MON87769 | 0.04 | 0.085 | 0.6/0.15 | 0.2/0.05 | 200 | 50 | |
FG72 | 0.023 | 0.08 | 0.4/0.2 | 0.2/0.2 | 100 | 25 | |
MON87705 | 0.04 | 0.085 | 0.3/0.15 | 0.15/0.05 | 200 | 50 | |
CV127 | 0.04 | 0.08 | 0.4/0.15 | 0.1/0.05 | 100 | 25 | |
A2704-12 | 0.023 | 0.045 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
GTS40-3-2 | 0.045 | 0.09 | 0.15 | 0.05/0.05 | 200 | 50 | |
A5547-127 | 0.23 | 0.08 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
油菜 Rape(Brassica napus L.) | DP-073496-4 | 0.04 | 0.08 | 0.6/0.9 | 0.25/0.15 | 100 | 20 |
GT73 | 0.04 | 0.085 | 0.15/0.2 | 0.05/0.2 | 200 | 50/25 | |
MON88302 | 0.04 | 0.085 | 0.45/0.3 | 0.2/0.25 | 4 µL | 50 | |
Ms1, Ms8, RF1, RF2, RF3, Topas19/2 | 0.045 | 0.09 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
T45 | 0.045/0.04 | 0.09/0.085 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
使用频率最高的扩增体系 The most frequently used amplification system | 0.04 | 0.08 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 18/40 | 11/40 | 11/40 | 15/40 | 23/40 | 24/50 |
表5 不同农作物转化体定量实时荧光PCR定性鉴定扩增体系比较
Table 5 Comparison of amplification system of real-time PCR methods for qualitative identification of different crop events
物种 Species | 转化体 Events | 检出限 LOD≤(%) | 定量限 LOQ≤(%) | 靶标 Target gene | 内参 Reference gene | 25 mg/L template/ng | 终体积 Final volume/ µL |
---|---|---|---|---|---|---|---|
引物/探针浓度 Concentration of primers/probe /(µmol·L-1) | |||||||
玉米 Maize(Zea mays L.) | TC1507 | - | 0.08 | 0.3/0.3 | 0.15/0.18 | 200 | 25 |
T25 | 0.045 | 0.09 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
MON89034 | 0.04 | 0.085 | 0.45/0.3 | 0.1/0.16 | 200 | 50/25 | |
MON88017 | 0.045 | 0.09 | 0.15/0.3 | 0.05/0.16 | 200 | 50 | |
MON87460 | 0.04 | 0.085 | 0.6/0.3 | 0.25/0.16 | 200 | 50/25 | |
MON863 | - | - | 0.15/0.15 | 0.05/0.05 | 280 | 50 | |
MON810 | 0. 1 | 0. 1 | 0.3/0.3 | 0.18/0.18 | 2.3-150 | 25 | |
MIR604 | 0.045 | 0.09 | 0.6/0.3 | 0.2/0.2 | 200 | 25 | |
NK603 | 0.05 | 0.10 | 0.15/0.15 | 0.05/0.05 | 300 | 50 | |
MIR162 | 0.04 | 0.08 | 0.3/0.3 | 0.15/0.2 | 250 | 25 | |
LY038 | 0.05 | 0.09 | 0.15/0.3 | 0.05/0.16 | 200 | 50/25 | |
GA21 | 0.04 | 0.04 | 0.9/0.3 | 0.2/0.2 | 250 | 25 | |
E3272 | 0.04 | 0.09 | 0.9/0.3 | 0.2/0.2 | 250 | 25 | |
DAS-40278-9 | 0.04 | 0.08 | 0.35/0.3 | 0.15/0.18 | 5 µL | 25 | |
BT176 | 0.01 | 0.01 | 0.6/0.3 | 0.2/0.2 | 250 | 25 | |
BT11 | 0.04 | 0.08 | 0.2/0.3 | 0.15/0.3 | 250 | 25 | |
98140 | 0.04 | 0.08 | 0.5/0.4 | 0.2/0.15 | 200/100 | 25 | |
大豆 Soybean(Glycine max L.) | DP305423 | 0.04 | 0.08 | 0.5/0.55 | 0.22/0.1 | 100 | 25 |
MON87708, MON87701 | 0.04 | 0.085 | 0.6/0.15 | 0.25/0.05 | 200 | 50 | |
MON89788 | 0.045 | 0.09 | 0.15/0.15 | 0.05/0.05 | 200 | 50 | |
DP356043 | 0.04 | 0.08 | 0.75/0.65 | 0.20/0.18 | 100 | 25 | |
MON87769 | 0.04 | 0.085 | 0.6/0.15 | 0.2/0.05 | 200 | 50 | |
FG72 | 0.023 | 0.08 | 0.4/0.2 | 0.2/0.2 | 100 | 25 | |
MON87705 | 0.04 | 0.085 | 0.3/0.15 | 0.15/0.05 | 200 | 50 | |
CV127 | 0.04 | 0.08 | 0.4/0.15 | 0.1/0.05 | 100 | 25 | |
A2704-12 | 0.023 | 0.045 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
GTS40-3-2 | 0.045 | 0.09 | 0.15 | 0.05/0.05 | 200 | 50 | |
A5547-127 | 0.23 | 0.08 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
油菜 Rape(Brassica napus L.) | DP-073496-4 | 0.04 | 0.08 | 0.6/0.9 | 0.25/0.15 | 100 | 20 |
GT73 | 0.04 | 0.085 | 0.15/0.2 | 0.05/0.2 | 200 | 50/25 | |
MON88302 | 0.04 | 0.085 | 0.45/0.3 | 0.2/0.25 | 4 µL | 50 | |
Ms1, Ms8, RF1, RF2, RF3, Topas19/2 | 0.045 | 0.09 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
T45 | 0.045/0.04 | 0.09/0.085 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
使用频率最高的扩增体系 The most frequently used amplification system | 0.04 | 0.08 | 0.4/0.2 | 0.2/0.2 | 200 | 25 | |
使用频率最高的扩增体系占比 The percentage of amplification systems with the highest frequency of use | 18/40 | 11/40 | 11/40 | 15/40 | 23/40 | 24/50 |
图1 不同玉米转化体普通PCR通用检测方法验证 A:内参基因zSSIIb在不同玉米转化体中扩增结果(阳性:转化体;阴性:非转基因玉米;空白:水对照);B:转化体特异性引物在不同玉米转化体和非转基因玉米中扩增结果(阴性对照1-8);C:转化体特异性引物在非转基因玉米(阴性对照9-16)和水对照中扩增结果。1: 12-5、2: Bt11、3: Bt176、4: Mon810、5: 5307、6: Mon87427、7: C0030.3.5、8: 4114、9: C0030.3.1、10: GH5112E-117C、11: C0030.2.4、12: C0030.2.5、13: CC-2、14: DBN9501、15: GA21、16: NK603
Fig. 1 Verification of common PCR detection methods of different maize events A: Amplification of a maize reference gene, zSSIIb, in different maize events(positive: events; negative: non-transgenic maize; blank: water control). B: Amplification of event specific in different maize events and non-transgenic maize(negative control 1-8). C: Amplification of event specific in non-transgenic maize(negative control 9-16)and water control.1: 12-5, 2: Bt11, 3: Bt176, 4: Mon810, 5: 5307, 6: Mon87427, 7: C0030.3.5, 8: 4114, 9: C0030.3.1, 10: GH5112E-117C, 11: C0030.2.4, 12: C0030.2.5, 13: CC-2, 14: DBN9501, 15: GA21, and 16: NK603
[1] | Waiblinger HU, Eichner CA, Näumann G, et al. GMO analysis results from official food control laboratories in Germany from 2017 to 2021[J]. J Verbrauch Lebensm, 2023, 18(1): 93-99. |
[2] | 黄大昉. 我国转基因作物育种发展回顾与思考[J]. 生物工程学报, 2015, 31(6): 892-900. |
Huang DF. Review of transgenic crop breeding in China[J]. Chin J Biotechnol, 2015, 31(6): 892-900. | |
[3] |
王颢潜, 高鸿飞, 王梦雨, 等. 转基因生物成分快速检测技术研究进展[J]. 中国油料作物学报, 2022, 44(3): 491-496.
doi: 10.19802/j.issn.1007-9084.2021078 |
Wang HQ, Gao HF, Wang MY, et al. Research progress on the rapid detection technologies for composition of genetically modified organisms[J]. Chin J Oil Crop Sci, 2022, 44(3): 491-496. | |
[4] |
Holst-Jensen A, Rønning SB, Løvseth A, et al. PCR technology for screening and quantification of genetically modified organisms(GMOs)[J]. Anal Bioanal Chem, 2003, 375(8): 985-993.
pmid: 12733008 |
[5] | Mäde D, Degner C, Grohmann L. Detection of genetically modified rice: a construct-specific real-time PCR method based on DNA sequences from transgenic Bt rice[J]. Eur Food Res Technol, 2006, 224(2): 271-278. |
[6] | 中华人民共和国农业农村部.转基因植物及其产品成分检测玉米常见转基因成分筛查: 农业农村部公告第423号-9—2021[S]. 北京: 中国农业出版社, 2021: 10. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Detection of genetically modified plants and derived products-screening of common genetically modified component in maize: Announcement No.423-9-2021 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[S]. Beijing: China Agriculture Press, 2021: 10. | |
[7] | 中华人民共和国农业农村部.转基因植物及其产品成分检测大豆常见转基因成分筛查: 农业农村部公告第628号-9—2022[S]. 北京: 中国农业出版社, 2023: 3. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Detection of genetically modified plants and derived products-screening of common genetically modified component in soybean: Announcement No.628-9-2022 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[S]. Beijing: China Agriculture Press, 2023: 3. | |
[8] | 中华人民共和国农业农村部.转基因植物及其产品成分检测水稻常见转基因成分筛查:农业农村部公告第628号-11—2022[S]. 北京: 中国农业出版社, 2023: 2. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Detection of genetically modified plants and derived products-screening of common genetically modified component in rice: Announcement No. 628-11-2022 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[S]. Beijing: China Agriculture Press, 2023: 2. | |
[9] | 中华人民共和国农业农村部.转基因植物及其产品成分检测油菜常见转基因成分筛查:农业农村部公告第628号-10—2022[S]. 北京: 中国农业出版社, 2023: 2. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Detection of genetically modified plants and derived products-screening of common genetically modified components in rapeseed: Announcement No. 628-10-2022 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[S]. Beijing: China Agriculture Press, 2023: 2. | |
[10] | 中华人民共和国农业部.转基因植物及其产品成分检测调控元件CaMV 35S启动子、FMV 35S启动子、NOS启动子、NOS终止子和CaMV 35S终止子定性PCR方法: 农业部1782号公告-3—2012[S]. 北京: 中国农业出版社, 2012: 9. |
Ministry of Agriculture of the People's Republic of China.Detection of genetically modified plants and derived products. Qualitative PCR method for the regulatory elements CaMV 35S promoter, FMV 35S promoter, NOS promoter, NOS terminator and CaMV 35S terminator:Announcement No.1782-3-2012 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China[S]. Beijing: China Agriculture Press, 2012: 9. | |
[11] |
Cottenet G, Blancpain C, Sonnard V, et al. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms[J]. Anal Bioanal Chem, 2013, 405(21): 6831-6844.
doi: 10.1007/s00216-013-7125-5 pmid: 23831826 |
[12] | Verginelli D, Paternò A, De Marchis ML, et al. Development and comparative study of a pat/bar real-time PCR assay for integrating the screening strategy of a GMO testing laboratory[J]. J Sci Food Agric, 2020, 100(5): 2121-2129. |
[13] | Long LK, Yan W, Li CC, et al. Event-specific quantitative polymerase chain reaction methods for detection of double-herbicide-resistant genetically modified corn MON 87419 based on the 3'-junction of the insertion site[J]. Biosci Biotechnol Biochem, 2021, 85(6): 1468-1475. |
[14] |
缪青梅, 赵杨, 徐晓丽, 等. 转g10-epsps基因耐除草剂大豆ZUTS-33转化体特异性检测方法的建立[J]. 生物技术进展, 2020, 10(6): 696-703.
doi: 10.19586/j.2095-2341.2020.0124 |
Miao QM, Zhao Y, Xu XL, et al. Establishment of transformant-specific detection method for the herbicide-tolerant transgenic soybean event ZUTS-33 harboring the g10-epsps transgene[J]. Curr Biotechnol, 2020, 10(6): 696-703.
doi: 10.19586/j.2095-2341.2020.0124 |
|
[15] | 郭翠, 张维, 余桂容, 等. 转G2-EPSPS基因玉米D-3侧翼序列分析与转化体特异性检测方法[J]. 作物杂志, 2016,(1): 69-75. |
Guo C, Zhang W, Yu GR, et al. Analysis of the flanking sequence and event-specific detection of transgenic G2-EPSPS line of maize[J]. Crops, 2016,(1): 69-75. | |
[16] | 林萍萍, 史云鹏, 安鹏天, 等. 影响实时荧光PCR检测转基因作物的因素分析[J]. 植物检疫, 2022, 36(5): 50-53. |
Lin PP, Shi YP, An PT, et al. Analysis of influence factors on detection of transgenic crops by real-time PCR[J]. Plant Quar, 2022, 36(5): 50-53. | |
[17] | 郭兆奎, 魏继承, 于艳华, 等. 烟草转基因检测标准及PCR反应体系的研究[J]. 中国烟草学报, 2000, 6(3): 18-22. |
Guo ZK, Wei JC, Yu YH, et al. Study on GMT testing standard and PCR system[J]. Acta Tabacaria Sinca, 2000, 6(3): 18-22. | |
[18] |
黄耀辉, 樊殿峰, 焦悦, 等. 浅谈多国转基因产品标识制度对我国的启示[J]. 生物技术进展, 2022, 12(4): 516-522.
doi: 10.19586/j.2095-2341.2021.0185 |
Huang YH, Fan DF, Jiao Y, et al. Enlightenment of GMO labeling system in other countries to China[J]. Curr Biotechnol, 2022, 12(4): 516-522.
doi: 10.19586/j.2095-2341.2021.0185 |
|
[19] | 国家标准化管理委员会.转基因产品检测实时荧光定性聚合酶链式反应(PCR)检测方法:GB/T 19495.4-2018[S/OL]. 北京: 中国标准出版社, 2018, 4. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=C8EBB7C00FAC516E89EB8BE7A3DABFFF. |
Standardization Administration of China.Detection of genetically modified plants and derived products-qualitative real-time polymerase chain reaction(PCR)methods:GB/T 19495.4-2018[S/OL]. Beijing: Standards Press of China, 2018, 4. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=C8EBB7C00FAC516E89EB8BE7A3DABFFF. | |
[20] | 国家标准化管理委员会.转基因产品检测实时荧光定量聚合酶链式反应(PCR)检测方法:GB/T 19495.5-2018[S/OL]. 北京: 中国标准出版社, 2018, 4. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=01741335A5D0BADB9BFD2C5F547203CC. |
Standardization Administration of China.Detection of genetically modified plants and derived products-quantitative real-time polymerase chain reaction(PCR)methods:GB/T 19495.5-2018[S/OL]. Beijing: Standards Press of China, 2019, 4. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=01741335A5D0BADB9BFD2C5F547203CC. | |
[21] |
Buh Gasparic M, Tengs T, La Paz JL, et al. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection[J]. Anal Bioanal Chem, 2010, 396(6): 2023-2029.
doi: 10.1007/s00216-009-3418-0 pmid: 20087729 |
[22] | van Duijn G, van Biert R, Bleeker-Marcelis H, et al. Detection methods for genetically modified crops[J]. Food Contr, 1999, 10(6): 375-378. |
[23] |
Scholtens IMJ, Kok EJ, Hougs L, et al. Increased efficacy for in-house validation of real-time PCR GMO detection methods[J]. Anal Bioanal Chem, 2010, 396(6): 2213-2227.
doi: 10.1007/s00216-009-3315-6 pmid: 20012027 |
[24] | Ghedira R, Papazova N, Vuylsteke M, et al. Assessment of primer/template mismatch effects on real-time PCR amplification of target taxa for GMO quantification[J]. J Agric Food Chem, 2009, 57(20): 9370-9377. |
[25] | 李红杰, 贾亚男, 张彦军, 等. 国内外转基因与基因编辑作物监管现状[J]. 中国农业大学学报, 2023, 28(9): 1-11. |
Li HJ, Jia YN, Zhang YJ, et al. Regulatory status of GM and gene-edited crops at domestic and abroad[J]. J China Agric Univ, 2023, 28(9): 1-11. | |
[26] | 窦迎港, 甄珍. 基因编辑作物技术原理、商业化及检测研究进展[J]. 作物杂志, 2023,(2): 16-23. |
Dou YG, Zhen Z. Progress in the technical principle, commercialization and testing research of gene-edited crops[J]. Crops, 2023,(2): 16-23. |
[1] | 任晓敏, 云岚, 艾芊, 赵乔. 新麦草异戊烯基转移酶PjIPT基因的功能验证[J]. 生物技术通报, 2024, 40(7): 207-215. |
[2] | 王秋月, 段鹏亮, 李海笑, 刘宁, 曹志艳, 董金皋. 玉米大斑病菌cDNA文库的构建及转录因子StMR1互作蛋白的筛选[J]. 生物技术通报, 2024, 40(6): 281-289. |
[3] | 胡锦锦, 李素贞, 马旭辉, 柳小庆, 谢珊珊, 江海洋, 陈茹梅. 玉米花青素生物合成代谢调控[J]. 生物技术通报, 2024, 40(6): 34-44. |
[4] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[5] | 王佳玮, 李晨, 刘建利, 周世杰, 易嘉敏, 杨谨源, 康鹏. 内生真菌接种方式对青贮玉米幼苗生长的影响[J]. 生物技术通报, 2024, 40(4): 189-202. |
[6] | 胡伊娃, 陈露. 玉米野生种基因组研究进展及应用[J]. 生物技术通报, 2024, 40(3): 14-24. |
[7] | 殷子薇, 红雨. 玫瑰红球菌NB1对玉米的耐盐促生效应及其全基因组研究[J]. 生物技术通报, 2024, 40(12): 193-207. |
[8] | 田锦, 张月秋, 张华, 陈子言, 田璐, 王颢潜, 高芳瑞, 梁晋刚, 陈红. 转基因玉米浙大瑞丰8特异性定性PCR检测方法研究[J]. 生物技术通报, 2024, 40(12): 45-52. |
[9] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[10] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[11] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[12] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[13] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[14] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[15] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||