生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 170-181.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0412
徐艳姣1,2,3,4(), 洪开云1,2,3, 卢宜旺1,2,3, 汪长清1,2,3, 梁艳丽1,2,3, 和四梅1,2,3(
)
收稿日期:
2024-04-30
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
和四梅,女,博士,讲师,研究方向:天然产物生物合成;E-mail: simeiheynau@163.com作者简介:
徐艳姣,女,硕士研究生,研究方向:药用植物生物合成;E-mail: 1191556757@qq.com
基金资助:
XU Yan-jiao1,2,3,4(), HONG Kai-yun1,2,3, LU Yi-wang1,2,3, WANG Chang-qing1,2,3, LIANG Yan-li1,2,3, HE Si-mei1,2,3(
)
Received:
2024-04-30
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】22(R)-羟基胆固醇是藜芦甾体生物碱合成的重要前体,通过异源表达验证藜芦(Veratrum nigrum)中胆固醇C-22位羟化酶的功能,并构建酵母底盘生产22(R)-羟基胆固醇,为藜芦甾体生物碱的生物合成途径解析奠定基础。【方法】基于藜芦转录组数据,从藜芦根中克隆3条全长的CYP90B亚家族基因序列,构建到酵母Y33表达载体,并转入胆固醇酵母底盘进行功能验证。通过高效液相色谱、液相色谱-质谱联用仪检测酵母摇瓶发酵产物,筛选到具有胆固醇C-22位羟化酶催化功能的酶VnCYP90B27-1,利用多片段组装、同源重组和醋酸锂转化等方法将VnCYP90B27-1整合到酵母染色体,构建22(R)-羟基胆固醇的酵母底盘。【结果】实时荧光定量PCR(RT-qPCR)显示,3条候选基因在根和叶中的表达与转录组表达趋势一致,VnCYP90B27-1在藜芦根中的表达量极显著高于叶。系统发育树结果表明,VnCYP90B27-1与加州藜芦的VcCYP90B27和藜芦的VnCYP90B27有较高的同源性,同属于CYP90B亚家族。此外,酵母异源表达结果表明,VnCYP90B27-1具有胆固醇C-22位羟化酶功能,并成功实现酿酒酵母异源合成22(R)-羟基胆固醇,摇瓶产量达(5.37±0.37)mg/L。【结论】成功克隆并验证了藜芦22(R)-羟基胆固醇合成基因VnCYP90B27-1的功能,构建了22(R)-羟基胆固醇酵母底盘,证明在酿酒酵母中VnCYP90B27-1的催化活性比加州藜芦的VcCYP90B27高,为甾体生物碱异源合成提供基因资源。
徐艳姣, 洪开云, 卢宜旺, 汪长清, 梁艳丽, 和四梅. 藜芦22(R)-羟基胆固醇合成基因功能验证与酵母异源合成[J]. 生物技术通报, 2024, 40(12): 170-181.
XU Yan-jiao, HONG Kai-yun, LU Yi-wang, WANG Chang-qing, LIANG Yan-li, HE Si-mei. Function Verification of Genes Involved in 22 (R)-hydroxycholesterol Biosynthesis in Veratrum nigrum and Their Heterologous Synthesis[J]. Biotechnology Bulletin, 2024, 40(12): 170-181.
基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
ACT | CGAGAGCAATGTACGCAAGC GGTGTCAGCCATACTGTCCC | 实时荧光定量 PCR RT-qPCR |
VnigCYP063 | GTCGATCCCCATCAACTTGC ACTCGAGGAAGTAGATGGCG | |
VnigCYP106 | ACGTGGTTAGGTTTGTGCAC TCCACGGATCGAACTGTTGA | |
VnigCYP119 | TCAGGGCGGTACATATGGAC CAACTTGGCGAGCTCAGATC | |
Y33-VnigCYP063 | cagtcgacctcgaatctagaATGGCGATGGAGCTCCTC catgatgcggccctctagaTCAGTCCCCGAGTTTTTCGAG | 基因克隆 Gene clone |
Y33-VnigCYP106 | cagtcgacctcgaatctagaATGTCGACAATAAGAGAGCTACTC acatgatgcggccctctagaTCATGTTACGGCGCGAACCTTG | |
Y33-VnigCYP119 | cagtcgacctcgaatctagaATGGAACCTGTGGCGATTCTAC acatgatgcggccctctagaCTACATCATCTCCATCTCATTTGGC |
表1 RT-qPCR引物和基因克隆引物序列表
Table 1 Sequences of RT-qPCR primers and gene cloning primers
基因 Gene | 引物序列 Primer sequence(5'-3') | 用途 Purpose |
---|---|---|
ACT | CGAGAGCAATGTACGCAAGC GGTGTCAGCCATACTGTCCC | 实时荧光定量 PCR RT-qPCR |
VnigCYP063 | GTCGATCCCCATCAACTTGC ACTCGAGGAAGTAGATGGCG | |
VnigCYP106 | ACGTGGTTAGGTTTGTGCAC TCCACGGATCGAACTGTTGA | |
VnigCYP119 | TCAGGGCGGTACATATGGAC CAACTTGGCGAGCTCAGATC | |
Y33-VnigCYP063 | cagtcgacctcgaatctagaATGGCGATGGAGCTCCTC catgatgcggccctctagaTCAGTCCCCGAGTTTTTCGAG | 基因克隆 Gene clone |
Y33-VnigCYP106 | cagtcgacctcgaatctagaATGTCGACAATAAGAGAGCTACTC acatgatgcggccctctagaTCATGTTACGGCGCGAACCTTG | |
Y33-VnigCYP119 | cagtcgacctcgaatctagaATGGAACCTGTGGCGATTCTAC acatgatgcggccctctagaCTACATCATCTCCATCTCATTTGGC |
图4 胆固醇C-22位羟化酶基因表达模式分析 A:转录组表达量TPM值;B:qPCR表达量(**P<0.01,*P<0.05)
Fig. 4 Analysis of gene expression pattern of cholesterol C-22 hydroxylase A : TPM value of transcriptome expression ; B: qPCR expression,(**P<0.01,*P<0.05)
图5 藜芦RNA及基因扩增琼脂糖凝胶电泳图 A:1、2:根;3、4:叶;B:1:VnigCYP063, 2:VnigCYP1063, 3:Vnig-CYP119, 4:VcCYP90B27v1
Fig. 5 Agarose gel electrophoresis of V. nigrum RNA and gene amplification A : 1, 2 : root ; 3, 4 : leaf ; B : 1 : VnigCYP063, 2 : VnigCYP1063, 3 : VnigCYP119, 4 : VcCYP90B27v1. M: Normal Run 250bp-II DNA ladder / DNA marker
图6 Y33载体线性化及菌落PCR凝胶电泳图 A:Y33载体酶切电泳图;B:候选基因重组转菌水PCR
Fig. 6 Y33 vector linearization and colony PCR gel electrophoresis A: Y33 vector enzyme digestion electrophoresis map; B : candidate gene recombinant bacteria water PCR
图8 VnigCYP063和VcCYP90B27在 Vg13底盘中的发酵产物LC-MS检测图 A:不同酵母产物TIC(m/z 425)保留时间图;B:22(R)-羟基胆固醇标准品质谱图;C/D:Y33-VnigCYP063和Y33-VcCYP90B27酵母产物22(R)-羟基胆固醇质谱图
Fig. 8 Fermentation products of VnigCYP063 and VcCYP90B27 in Vg13 chassis A: Retention time diagram of TIC(m/z425)of different yeast products; B: 22(R)-hydroxycholesterol standard mass spectrum; C/D: Y33-VnigCYP063 and Y33-VcCYP90B27 yeast products 22(R)-hydroxycholesterol mass spectra
图11 22(R)-羟基胆固醇底盘菌产物中的发酵产物 (1)22(R)-羟基胆固醇,(2)胆固醇
Fig. 11 22(R)-hydroxy cholesterol chassischia products of fermentated products (1)22(R)-hydroxycholester(1).(2)Cholesterol
图12 酵母菌发酵产物测定图 A:22(R)-羟基胆固醇标准曲线,B:底盘菌产物定量图,CHOL为胆固醇,22(R)-CHOL为22(R)-羟基胆固醇,小写字母表示不同菌株间产量差异达到(P<0.05)显著水平
Fig. 12 Determination of yeast fermentated products A: Standard curve of 22(R)-hydroxycholesterol. B: Quantitative analysis of chassisobacteria products,CHOL is cholesterol,22(R)-CHOL is 22-(R)-hydroxycholesterol. The lowercase letter indicates that the yield difference between different strains reached a significant level of(P<0.05)
[1] | 成孟华, 饶高雄. 藜芦属植物化学成分和药理作用的研究进展[J]. 中草药, 2021, 52(18): 5758-5774. |
Cheng MH, Rao GX. Research progress on chemical constituents and pharmacological activities of plants from Veratrum[J]. Chin Tradit Herb Drugs, 2021, 52(18): 5758-5774. | |
[2] | Xiang LM, Wang YH, Yi XM, et al. Steroidal alkaloid glycosides and phenolics from the immature fruits of Solanum nigrum[J]. Fitoterapia, 2019, 137: 104268. |
[3] | 李文希, 张屏, 李福全, 等. 藜芦甾体生物碱抗肿瘤活性研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(1): 118-125. |
Li WX, Zhang P, Li FQ, et al. Research progress on antitumor activity of steroidal alkaloids in genus Veratrum[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(1): 118-125. | |
[4] | 张蒙珍, 高丽娟, 徐世芳, 等. 藜芦属植物甾体生物碱及其药理活性研究进展[J]. 中国中药杂志, 2020, 45(21): 5129-5142. |
Zhang MZ, Gao LJ, Xu SF, et al. Advances in studies on steroidal alkaloids and their pharmacological activities in genus Veratrum[J]. China J Chin Mater Med, 2020, 45(21): 5129-5142. | |
[5] | Giannis A, Heretsch P, Sarli V, et al. Synthesis of cyclopamine using a biomimetic and diastereoselective approach[J]. Angew Chem Int Ed Engl, 2009, 48(42): 7911-7914. |
[6] | Wang D, Yu ZJ, Guan M, et al. Comparative transcriptome analysis of Veratrum maackii and Veratrum nigrum reveals multiple candidate genes involved in steroidal alkaloid biosynthesis[J]. Sci Rep, 2023, 13(1): 8198. |
[7] |
Xu LP, Wang D, Chen J, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production[J]. Metab Eng, 2022, 70: 115-128.
doi: 10.1016/j.ymben.2022.01.013 pmid: 35085779 |
[8] | Lin Y, Wang YN, Zhang GH, et al. Reconstruction of engineered yeast factory for high yield production of ginsenosides Rg3 and Rd[J]. Front Microbiol, 2023, 14: 1191102. |
[9] | Bureau JA, Oliva ME, Dong YM, et al. Engineering yeast for the production of plant terpenoids using synthetic biology approaches[J]. Nat Prod Rep, 2023, 40(12): 1822-1848. |
[10] |
Li MK, Ma MY, Wu ZK, et al. Advances in the biosynthesis and metabolic engineering of rare ginsenosides[J]. Appl Microbiol Biotechnol, 2023, 107(11): 3391-3404.
doi: 10.1007/s00253-023-12549-6 pmid: 37126085 |
[11] | Augustin MM, Ruzicka DR, Shukla AK, et al. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells[J]. Plant J, 2015, 82(6): 991-1003. |
[12] | 寇呈熹. 藜芦嗪的生物合成研究[D]. 哈尔滨: 东北林业大学, 2023. |
Kou CX. Study on biosynthesis of verazine[D]. Harbin:Northeast Forestry University, 2023. | |
[13] |
Seki H, Tamura K, Muranaka T. P450s and UGTs: key players in the structural diversity of triterpenoid saponins[J]. Plant Cell Physiol, 2015, 56(8): 1463-1471.
doi: 10.1093/pcp/pcv062 pmid: 25951908 |
[14] |
Sonawane PD, Pollier J, Panda S, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism[J]. Nat Plants, 2016, 3: 16205.
doi: 10.1038/nplants.2016.205 pmid: 28005066 |
[15] |
Yin Y, Gao L, Zhang X, et al. A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway[J]. Phytochemistry, 2018, 156: 116-123.
doi: S0031-9422(18)30587-9 pmid: 30268044 |
[16] | Chen Z, Yu HY, Jin GT, et al. 22R-but not 22S-hydroxycholesterol is recruited for diosgenin biosynthesis[J]. The Plant Journal, 2022:109,940-951. |
[17] | 张永辉, 刘正杰, 成钦, 等. 芦笋胆固醇C-22羟化酶基因AoCYP90B27的克隆及表达模式分析[J]. 西北农业学报, 2023, 32(8): 1205-1214. |
Zhang YH, Liu ZJ, Cheng Q, et al. Cloning and expression pattern of cholesterol C-22 hydroxylase gene AoCYP90B27 from Asparagus officinalis[J]. Acta Agric Boreali Occidentalis Sin, 2023, 32(8): 1205-1214. | |
[18] | Szeliga M, Ciura J, Tyrka M. Representational difference analysis of transcripts involved in jervine biosynthesis[J]. Life, 2020, 10(6): 88. |
[19] | 郑晓红, 管童伟, 韩旭然, 等. 环巴胺类似物的合成及体外抗肿瘤细胞活性研究[J]. 天然产物研究与开发, 2015, 27(5): 890-895. |
Zheng XH, Guan TW, Han XR, et al. Synthesis and antitumor activity of cyclopamine analogues[J]. Nat Prod Res Dev, 2015, 27(5): 890-895.
doi: 10.16333/j.1001-6880.2015.05.027 |
|
[20] |
Wang Y, Shi Y, Tian WS, et al. Stereoselective synthesis of(-)-verazine and congeners via a cascade ring-switching process of furostan-26-acid[J]. Org Lett, 2020, 22(7): 2761-2765.
doi: 10.1021/acs.orglett.0c00747 pmid: 32202118 |
[21] | 温文, 薛兵, 康静静, 等. 响应面法优化毛叶藜芦环巴胺的提取工艺[J]. 食品工业科技, 2014, 35(4): 219-222. |
Wen W, Xue B, Kang JJ, et al. Optimization of cyclopamine extraction from Veratrum grandiflorum Loes by response surface methodology[J]. Sci Technol Food Ind, 2014, 35(4): 219-222. | |
[22] | Turner MW, Cruz R, Mattos J, et al. Cyclopamine bioactivity by extraction method from Veratrum californicum[J]. Bioorg Med Chem, 2016, 24(16): 3752-3757. |
[23] | Turner MW, Rossi M, Campfield V, et al. Steroidal alkaloid variation in Veratrum californicum as determined by modern methods of analytical analysis[J]. Fitoterapia, 2019, 137: 104281. |
[24] |
Parks LW, Casey WM. Physiological implications of sterol biosynthesis in yeast[J]. Annu Rev Microbiol, 1995, 49: 95-116.
pmid: 8561481 |
[25] |
Dai ZB, Liu Y, Zhang XN, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metab Eng, 2013, 20: 146-156.
doi: 10.1016/j.ymben.2013.10.004 pmid: 24126082 |
[26] | Xu SH, Nes WD. Biosynthesis of cholesterol in the yeast mutant erg6[J]. Biochem Biophys Res Commun, 1988, 155(1): 509-517. |
[27] |
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds[J]. Gene, 1995, 156(1): 119-122.
doi: 10.1016/0378-1119(95)00037-7 pmid: 7737504 |
[28] |
Zhao FL, Bai P, Liu T, et al. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2016, 113(8): 1787-1795.
doi: 10.1002/bit.25934 pmid: 26757342 |
[29] |
Yang JZ, Liu YG, Zhong DC, et al. Combinatorial optimization and spatial remodeling of CYPs to control product profile[J]. Metab Eng, 2023, 80: 119-129.
doi: 10.1016/j.ymben.2023.09.004 pmid: 37703999 |
[1] | 任晓敏, 云岚, 艾芊, 赵乔. 新麦草异戊烯基转移酶PjIPT基因的功能验证[J]. 生物技术通报, 2024, 40(7): 207-215. |
[2] | 杜泽光, 任少文, 张凤勤, 李梅兰, 李改珍, 齐仙惠. 大白菜BrMLP328的克隆、表达及功能验证[J]. 生物技术通报, 2024, 40(4): 122-129. |
[3] | 杨伟成, 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱, 李润植. 陆地棉FAX家族的全基因组鉴定及GhFAX1的功能分析[J]. 生物技术通报, 2024, 40(3): 155-169. |
[4] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[5] | 李峰, 陈雯雯, 邓江丽, 毛清黎, 权文利, 毛雅慧. 白藜芦醇对核桃细菌性黑斑病菌的抑制作用[J]. 生物技术通报, 2021, 37(6): 58-65. |
[6] | 乔孟欣, 李素贞, 陈景堂. 玉米铁还原酶基因ZmFRO2的功能分析[J]. 生物技术通报, 2020, 36(11): 9-20. |
[7] | 高原, 王福玲, 徐蓓蕾, 雒江菡, 阎力君, 赵莹莹, 王越. 葡萄籽中白藜芦醇的提取及其对LO2细胞氧化损伤保护及延缓衰老作用[J]. 生物技术通报, 2018, 34(3): 225-229. |
[8] | 程杏安, 张淑明, 周晓武, 吴波, 林贤伟, 秦湘静 , 黄素青, 刘展眉, 蒋旭红. 两种天然产物对B16F10细胞增殖及黑色素合成抑制机理研究[J]. 生物技术通报, 2017, 33(8): 199-205. |
[9] | 周敏. 白藜芦醇对IgA大鼠肾组织TH2型炎性因子及血清CIC的影响[J]. 生物技术通报, 2017, 33(6): 128-133. |
[10] | 冯薇, 胡小妍, 马明娜, 郭萌, 路福平, 李玉. 产β-葡萄糖苷酶细菌的筛选及转化白藜芦醇的研究[J]. 生物技术通报, 2017, 33(11): 130-135. |
[11] | 姚庆收, 姜吉刚, 武玉永, 梁乘榜. 培养基种类对花生毛状根株系生物量和白藜芦醇含量的影响[J]. 生物技术通报, 2014, 30(5): 174-178. |
[12] | 柳忠玉, 赵树进. 转PcRS基因拟南芥的抗炭疽病研究[J]. 生物技术通报, 2014, 30(10): 107-112. |
[13] | 黄秀琴;郭丽琼;李小明;林俊芳;袁致浩;谭铭琛;. 花生白藜芦醇合酶基因的克隆与生物信息学分析[J]. , 2012, 0(03): 69-74. |
[14] | 张怡;李成伟;. 酵母异源功能互补在植物基因克隆中的应用[J]. , 2010, 0(07): 14-21. |
[15] | 冯磊;花慧;邱丽颖;金坚;. 白藜芦醇靶点蛋白质的研究[J]. , 2009, 0(08): 128-133. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 391
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||