生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 39-48.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0457
尹号1,2(), 尤留超1,2, 韩瑞1,2, 高鹏程1,2, 付磊1,2(
), 储岳峰1,2(
)
收稿日期:
2024-05-16
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
付磊,男,博士,助理研究员,研究方向:病原学及分子生物学;E-mail: fulei@caas.cn;作者简介:
尹号,男,硕士研究生,研究方向:分子生物学;E-mail: qubaobaozz@163.com
基金资助:
YIN Hao1,2(), YOU Liu-chao1,2, HAN Rui1,2, GAO Peng-cheng1,2, FU Lei1,2(
), CHU Yue-feng1,2(
)
Received:
2024-05-16
Published:
2025-01-26
Online:
2025-01-22
摘要:
基因组编辑技术是研究细菌等微生物在基因功能、耐药机制及致病机制等方面的重要工具,而同源重组是细菌基因组编辑的重要方式之一,传统的细菌内源性重组途径存在效率低下的问题,而一种来自噬菌体的单链DNA退火蛋白(SSAP)表现出了远超内源性重组途径的基因组编辑效率,该蛋白具有单链DNA结合活性、介导基因组定向重组的特点,使其成为目前极具潜力的基因组编辑工具。本文主要对同源重组基本原理、噬菌体源SSAP介导的同源重组途径的基本元件、重组机制模型以及应用策略展开概述,旨在为进一步解析单链DNA退火蛋白介导的同源重组过程提供帮助,为研究更多细菌基因功能、致病机制以及开发工程菌株提供技术支撑,也为缺乏基因编辑方法的细菌提供技术参考。
尹号, 尤留超, 韩瑞, 高鹏程, 付磊, 储岳峰. 单链DNA退火蛋白介导细菌基因组同源重组的机制及应用研究进展[J]. 生物技术通报, 2025, 41(1): 39-48.
YIN Hao, YOU Liu-chao, HAN Rui, GAO Peng-cheng, FU Lei, CHU Yue-feng. Mechanisms and Application Research Progress of Bacterial Genomic Homologous Recombination Mediated by Single-stranded DNA Annealing Protein[J]. Biotechnology Bulletin, 2025, 41(1): 39-48.
图1 RecA介导ssDNA的重组模型及SSAP的链退火模型 RecA具有ssDNA结合活性,SSAP具有ssDNA退火活性,Exo具有靶向dsDNA的5'-3'端核酸外切酶活性。RecA介导的同源重组过程以链入侵为主要途径,SSAP介导的同源重组过程以链退火为主要途径。a:RecA结合ssDNA形成RecA-DNA复合物,携带ssDNA入侵至基因组的同源序列处,形成D环结构,从而完成重组过程;b:SSAP可直接结合ssDNA,将其以冈崎片段的形式退火至复制叉上,dsDNA则通过Exo处理成ssDNA后,以相同的方式完成重组
Fig. 1 Model of RecA-mediated recombination of ssDNA and the strand annealing model of SSAP RecA possesses ssDNA-binding activity, SSAP has ssDNA annealing activity, and Exo has 5'-3' exonuclease activity targeting dsDNA. The homologous recombination process mediated by RecA is primarily involved in strand invasion, while the homologous recombination process mediated by SSAP primarily in strand annealing. a: RecA binds to ssDNA to form a RecA-DNA complex, which carries the ssDNA to invade the homologous sequence in the genome, forming a D-loop structure, thereby completing the recombination process. b: SSAP can directly bind to ssDNA, annealing it to the replication fork in the form of Okazaki fragments. dsDNA is processed into ssDNA by Exo and then completes recombination in the same manner
图2 SSAP介导的重组过程示意图 SSAP为ssDNA退火活性,Exo为靶向dsDNA的5'-3'端核酸外切酶活性。a:SSAP介导ssDNA退火过程,以冈崎片段的形式退火至滞后链上;b:dsDNA会被Exo处理成其中一条链完全降解的ssDNA或暴露出两端3'悬垂的重组中间体;c:一般认为的SSAP介导ssDNA重组策略的复制叉模型:d:协同工作模型,即Exo降解dsDNA的其中一条链,另一条链则同时被SSAP退火到复制叉中
Fig. 2 Schematic diagram of the recombination process mediated by SSAP SSAP possesses ssDNA annealing activity, while Exo exhibits a 5'-3' exonuclease activity targeted at dsDNA. a: SSAP mediates the annealing of ssDNA, annealing it to the lagging strand in the form of Okazaki fragments. b: dsDNA is processed by Exo into either a completely degraded single strand of ssDNA or a recombination intermediate exposing 3' overhangs at both ends. c: The generally accepted model of SSAP-mediated ssDNA recombination strategy at the replication fork. d: A cooperative working model where Exo degrades one strand of the dsDNA while the other strand is simultaneously annealed by SSAP into the replication fork
[1] |
Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination[J]. Annu Rev Genet, 2002, 36: 361-388.
pmid: 12429697 |
[2] | Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
[3] |
Cox MM. Historical overview: searching for replication help in all of the rec places[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8173-8180.
doi: 10.1073/pnas.131004998 pmid: 11459950 |
[4] |
Sonoda E, Takata M, Yamashita YM, et al. Homologous DNA recombination in vertebrate cells[J]. Proc Natl Acad Sci USA, 2001, 98(15): 8388-8394.
pmid: 11459980 |
[5] | West SC. Molecular views of recombination proteins and their control[J]. Nat Rev Mol Cell Biol, 2003, 4(6): 435-445. |
[6] |
Hochegger H, Sonoda E, Takeda S. Post-replication repair in DT40 cells: translesion polymerases versus recombinases[J]. Bioessays, 2004, 26(2): 151-158.
pmid: 14745833 |
[7] |
Seitz EM, Kowalczykowski SC. The DNA binding and pairing preferences of the archaeal RadA protein demonstrate a universal characteristic of DNA strand exchange proteins[J]. Mol Microbiol, 2000, 37(3): 555-560.
pmid: 10931349 |
[8] |
Hsieh P, Camerini-Otero CS, Camerini-Otero RD. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA[J]. Proc Natl Acad Sci USA, 1992, 89(14): 6492-6496.
pmid: 1631148 |
[9] |
Egelman E. A ubiquitous structural core[J]. Trends Biochem Sci, 2000, 25(4): 183-184.
pmid: 10754551 |
[10] |
Kowalczykowski SC. Initiation of genetic recombination and recombination-dependent replication[J]. Trends Biochem Sci, 2000, 25(4): 156-165.
pmid: 10754547 |
[11] | Wyman C, Ristic D, Kanaar R. Homologous recombination-mediated double-strand break repair[J]. DNA Repair, 2004, 3(8/9): 827-833. |
[12] |
Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems[J]. PLoS Genet, 2005, 1(2): e15.
doi: 10.1371/journal.pgen.0010015 pmid: 16132081 |
[13] |
Rao BJ, Chiu SK, Bazemore LR, et al. How specific is the first recognition step of homologous recombination?[J]. Trends Biochem Sci, 1995, 20(3): 109-113.
pmid: 7709428 |
[14] |
Malkov VA, Camerini-Otero RD. Dissociation kinetics of RecA protein-three-stranded DNA complexes reveals a low fidelity of RecA-assisted recognition of homology[J]. J Mol Biol, 1998, 278(2): 317-330.
pmid: 9571054 |
[15] |
Malkov VA, Sastry L, Camerini-Otero RD. RecA protein assisted selection reveals a low fidelity of recognition of homology in a duplex DNA by an oligonucleotide[J]. J Mol Biol, 1997, 271(2): 168-177.
pmid: 9268650 |
[16] |
Morel P, Stasiak A, Ehrlich SD, et al. Effect of length and location of heterologous sequences on RecA-mediated strand exchange[J]. J Biol Chem, 1994, 269(31): 19830-19835.
pmid: 8051065 |
[17] |
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA, 2000, 97(12): 6640-6645.
doi: 10.1073/pnas.120163297 pmid: 10829079 |
[18] | Lee DJ, Bingle LEH, Heurlier K, et al. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains[J]. BMC Microbiol, 2009, 9: 252. |
[19] |
Wilson JH. Pointing fingers at the limiting step in gene targeting[J]. Nat Biotechnol, 2003, 21(7): 759-760.
pmid: 12833096 |
[20] |
Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli[J]. J Bacteriol, 1998, 180(8): 2063-2071.
pmid: 9555887 |
[21] |
Zhang Y, Buchholz F, Muyrers JP, et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nat Genet, 1998, 20(2): 123-128.
pmid: 9771703 |
[22] |
Iyer LM, Koonin EV, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52[J]. BMC Genomics, 2002, 3: 8.
pmid: 11914131 |
[23] |
Sawitzke JA, Thomason LC, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond[J]. Methods Enzymol, 2007, 421: 171-199.
pmid: 17352923 |
[24] |
Little JW. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction[J]. J Biol Chem, 1967, 242(4): 679-686.
pmid: 6017737 |
[25] |
Kmiec E, Holloman WK. Beta protein of bacteriophage lambda promotes renaturation of DNA[J]. J Biol Chem, 1981, 256(24): 12636-12639.
pmid: 6273399 |
[26] |
Kolodner R, Hall SD, Luisi-DeLuca C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes[J]. Mol Microbiol, 1994, 11(1): 23-30.
pmid: 8145642 |
[27] |
Murphy KC. Lambda Gam protein inhibits the helicase and Chi-stimulated recombination activities of Escherichia coli RecBCD enzyme[J]. J Bacteriol, 1991, 173(18): 5808-5821.
pmid: 1653221 |
[28] |
Marsić N, Roje S, Stojiljković I, et al. In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein[J]. J Bacteriol, 1993, 175(15): 4738-4743.
pmid: 8335632 |
[29] |
Thaler DS, Stahl MM, Stahl FW. Double-chain-cut sites are recombination hotspots in the Red pathway of phage lambda[J]. J Mol Biol, 1987, 195(1): 75-87.
pmid: 2958632 |
[30] |
Yu D, Ellis HM, Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. Proc Natl Acad Sci USA, 2000, 97(11): 5978-5983.
doi: 10.1073/pnas.100127597 pmid: 10811905 |
[31] |
Stahl MM, Thomason L, Poteete AR, et al. Annealing vs. invasion in phage lambda recombination[J]. Genetics, 1997, 147(3): 961-977.
doi: 10.1093/genetics/147.3.961 pmid: 9383045 |
[32] | Schumacher AJ, Mohni KN, Kan YN, et al. The HSV-1 exonuclease, UL12, stimulates recombination by a single strand annealing mechanism[J]. PLoS Pathog, 2012, 8(8): e1002862. |
[33] |
Kowalczykowski SC, Eggleston AK. Homologous pairing and DNA strand-exchange proteins[J]. Annu Rev Biochem, 1994, 63: 991-1043.
pmid: 7979259 |
[34] | Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair[J]. Prog Nucleic Acid Res Mol Biol, 1997, 56: 129-223. |
[35] |
Muniyappa K, Radding CM. The homologous recombination system of phage lambda. Pairing activities of beta protein[J]. J Biol Chem, 1986, 261(16): 7472-7478.
pmid: 2940241 |
[36] |
Erler A, Wegmann S, Elie-Caille C, et al. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52[J]. J Mol Biol, 2009, 391(3): 586-598.
doi: 10.1016/j.jmb.2009.06.030 pmid: 19527729 |
[37] | Matsubara K, Malay AD, Curtis FA, et al. Structural and functional characterization of the Redβ recombinase from bacteriophage Λ[J]. PLoS One, 2013, 8(11): e78869. |
[38] |
Passy SI, Yu X, Li Z, et al. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4279-4284.
doi: 10.1073/pnas.96.8.4279 pmid: 10200253 |
[39] |
Hall SD, Kane MF, Kolodner RD. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA[J]. J Bacteriol, 1993, 175(1): 277-287.
pmid: 8416902 |
[40] |
Thresher RJ, Makhov AM, Hall SD, et al. Electron microscopic visualization of RecT protein and its complexes with DNA[J]. J Mol Biol, 1995, 254(3): 364-371.
pmid: 7490755 |
[41] |
Hall SD, Kolodner RD. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein[J]. Proc Natl Acad Sci USA, 1994, 91(8): 3205-3209.
pmid: 8159725 |
[42] |
Karakousis G, Ye N, Li Z, et al. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation[J]. J Mol Biol, 1998, 276(4): 721-731.
pmid: 9500924 |
[43] |
Mythili E, Kumar KA, Muniyappa K. Characterization of the DNA-binding domain of beta protein, a component of phage lambda red-pathway, by UV catalyzed cross-linking[J]. Gene, 1996, 182(1-2): 81-87.
pmid: 8982071 |
[44] |
Joseph JW, Kolodner R. Exonuclease VIII of Escherichia coli. I. Purification and physical properties[J]. J Biol Chem, 1983, 258(17): 10411-10417.
pmid: 6350289 |
[45] |
Kovall R, Matthews BW. Toroidal structure of lambda-exonuclease[J]. Science, 1997, 277(5333): 1824-1827.
pmid: 9295273 |
[46] | Zhang JJ, Xing X, Herr AB, et al. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks[J]. Structure, 2009, 17(5): 690-702. |
[47] | Muyrers JP, Zhang Y, Buchholz F, et al. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners[J]. Genes Dev, 2000, 14(15): 1971-1982. |
[48] |
Rajagopala SV, Casjens S, Uetz P. The protein interaction map of bacteriophage lambda[J]. BMC Microbiol, 2011, 11: 213.
doi: 10.1186/1471-2180-11-213 pmid: 21943085 |
[49] |
Ellis HM, Yu D, DiTizio T, et al. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6742-6746.
doi: 10.1073/pnas.121164898 pmid: 11381128 |
[50] |
Costantino N, Court DL. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants[J]. Proc Natl Acad Sci USA, 2003, 100(26): 15748-15753.
pmid: 14673109 |
[51] |
Huen MSY, Li XT, Lu LY, et al. The involvement of replication in single stranded oligonucleotide-mediated gene repair[J]. Nucleic Acids Res, 2006, 34(21): 6183-6194.
doi: 10.1093/nar/gkl852 pmid: 17088285 |
[52] |
Lim SI, Min BE, Jung GY. Lagging strand-biased initiation of red recombination by linear double-stranded DNAs[J]. J Mol Biol, 2008, 384(5): 1098-1105.
doi: 10.1016/j.jmb.2008.10.047 pmid: 18983848 |
[53] |
Szczepańska AK. Bacteriophage-encoded functions engaged in initiation of homologous recombination events[J]. Crit Rev Microbiol, 2009, 35(3): 197-220.
doi: 10.1080/10408410902983129 pmid: 19563302 |
[54] |
Sharan SK, Thomason LC, Kuznetsov SG, et al. Recombineering: a homologous recombination-based method of genetic engineering[J]. Nat Protoc, 2009, 4(2): 206-223.
doi: 10.1038/nprot.2008.227 pmid: 19180090 |
[55] |
Poteete AR. Involvement of DNA replication in phage lambda Red-mediated homologous recombination[J]. Mol Microbiol, 2008, 68(1): 66-74.
doi: 10.1111/j.1365-2958.2008.06133.x pmid: 18333884 |
[56] |
Yu DG, Sawitzke JA, Ellis H, et al. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate[J]. Proc Natl Acad Sci USA, 2003, 100(12): 7207-7212.
pmid: 12771385 |
[57] |
Maresca M, Erler A, Fu J, et al. Single-stranded heteroduplex intermediates in lambda red homologous recombination[J]. BMC Mol Biol, 2010, 11: 54.
doi: 10.1186/1471-2199-11-54 pmid: 20670401 |
[58] |
Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate[J]. Genetics, 2010, 186(3): 791-799.
doi: 10.1534/genetics.110.120782 pmid: 20813883 |
[59] | Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda[J]. Microbiol Mol Biol Rev, 1999, 63(4): 751-813, table of contents. |
[60] |
Kolisnychenko V, Plunkett G 3rd, Herring CD, et al. Engineering a reduced Escherichia coli genome[J]. Genome Res, 2002, 12(4): 640-647.
pmid: 11932248 |
[61] | Yu BJ, Kang KH, Lee JH, et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome[J]. Nucleic Acids Res, 2008, 36(14): e84. |
[62] | Herring CD, Glasner JD, Blattner FR. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli[J]. Gene, 2003, 311: 153-163. |
[63] | Derbise A, Lesic B, Dacheux D, et al. A rapid and simple method for inactivating chromosomal genes in Yersinia[J]. FEMS Immunol Med Microbiol, 2003, 38(2): 113-116. |
[64] |
Husseiny MI, Hensel M. Rapid method for the construction of Salmonella enterica Serovar Typhimurium vaccine carrier strains[J]. Infect Immun, 2005, 73(3): 1598-1605.
pmid: 15731059 |
[65] | Beloin C, Dorman CJ. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri[J]. Mol Microbiol, 2003, 47(3): 825-838. |
[66] | Rossi MS, Paquelin A, Ghigo JM, et al. Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules[J]. Mol Microbiol, 2003, 48(6): 1467-1480. |
[67] | Lesic B, Rahme LG. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa[J]. BMC Mol Biol, 2008, 9: 20. |
[68] |
Yamamoto S, Izumiya H, Morita M, et al. Application of lambda Red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes[J]. Gene, 2009, 438(1-2): 57-64.
doi: 10.1016/j.gene.2009.02.015 pmid: 19268696 |
[69] |
Loessner MJ, Inman RB, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution[J]. Mol Microbiol, 2000, 35(2): 324-340.
pmid: 10652093 |
[70] |
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages[J]. Nat Rev Microbiol, 2008, 6(11): 851-857.
doi: 10.1038/nrmicro2014 pmid: 18923412 |
[71] | Sun ZP, Deng AH, Hu T, et al. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35[J]. Appl Microbiol Biotechnol, 2015, 99(12): 5151-5162. |
[72] | van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria[J]. Nucleic Acids Res, 2012, 40(10): e76. |
[73] | Dong HJ, Tao WW, Gong FY, et al. A functional recT gene for recombineering of Clostridium[J]. J Biotechnol, 2014, 173: 65-67. |
[74] |
Caldwell BJ, Zakharova E, Filsinger GT, et al. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein[J]. Nucleic Acids Res, 2019, 47(4): 1950-1963.
doi: 10.1093/nar/gky1309 pmid: 30624736 |
[75] | Yin J, Zheng WT, Gao YS, et al. Single-stranded DNA-binding protein and exogenous RecBCD inhibitors enhance phage-derived homologous recombination in Pseudomonas[J]. iScience, 2019, 14: 1-14. |
[76] |
Piano AL, Martínez-Jiménez MI, Zecchi L, et al. Recombination-dependent concatemeric viral DNA replication[J]. Virus Res, 2011, 160(1-2): 1-14.
doi: 10.1016/j.virusres.2011.06.009 pmid: 21708194 |
[77] |
Filsinger GT, Wannier TM, Pedersen FB, et al. Characterizing the portability of phage-encoded homologous recombination proteins[J]. Nat Chem Biol, 2021, 17(4): 394-402.
doi: 10.1038/s41589-020-00710-5 pmid: 33462496 |
[78] | Bartra SS, Styer KL, O'Bryant DM, et al. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein[J]. Infect Immun, 2008, 76(2): 612-622. |
[79] | Tahir H, Basit A, Tariq H, et al. Coupling CRISPR/Cas9 and lambda red recombineering system for genome editing of Salmonella gallinarum and the effect of ssaU knock-out mutant on the virulence of bacteria[J]. Biomedicines, 2022, 10(12): 3028. |
[80] | Juhas M, Ajioka JW. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome[J]. J Microbiol Methods, 2016, 125: 1-7. |
[81] | Li XT, Costantino N, Lu LY, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli[J]. Nucleic Acids Res, 2003, 31(22): 6674-6687. |
[82] |
Wang HH, Church GM. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering[J]. Methods Enzymol, 2011, 498: 409-426.
doi: 10.1016/B978-0-12-385120-8.00018-8 pmid: 21601688 |
[83] | Bonde MT, Klausen MS, Anderson MV, et al. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering[J]. Nucleic Acids Res, 2014, 42(Web Server issue): W408-W415. |
[84] | Wen S, Yang JG, Tan TW. Full-length single-stranded PCR product mediated chromosomal integration in intact Bacillus subtilis[J]. J Microbiol Methods, 2013, 92(3): 273-277. |
[85] |
Sawitzke JA, Costantino N, Li XT, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering[J]. J Mol Biol, 2011, 407(1): 45-59.
doi: 10.1016/j.jmb.2011.01.030 pmid: 21256136 |
[86] | Mosberg JA, Gregg CJ, Lajoie MJ, et al. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases[J]. PLoS One, 2012, 7(9): e44638. |
[87] |
Piñero-Lambea C, Garcia-Ramallo E, Martinez S, et al. Mycoplasma pneumoniae genome editing based on oligo recombineering and Cas9-mediated counterselection[J]. ACS Synth Biol, 2020, 9(7): 1693-1704.
doi: 10.1021/acssynbio.0c00022 pmid: 32502342 |
[88] |
Ipoutcha T, Gourgues G, Lartigue C, et al. Genome engineering in Mycoplasma gallisepticum using exogenous recombination systems[J]. ACS Synth Biol, 2022, 11(3): 1060-1067.
doi: 10.1021/acssynbio.1c00541 pmid: 35167277 |
[89] |
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, et al. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome[J]. Nucleic Acids Res, 2022, 50(22): e127.
doi: 10.1093/nar/gkac836 pmid: 36215032 |
[90] |
Muyrers JP, Zhang Y, Testa G, et al. Rapid modification of bacterial artificial chromosomes by ET-recombination[J]. Nucleic Acids Res, 1999, 27(6): 1555-1557.
pmid: 10037821 |
[91] | Yin J, Zhu HB, Xia LQ, et al. A new recombineering system for Photorhabdus and Xenorhabdus[J]. Nucleic Acids Res, 2015, 43(6): e36. |
[1] | 慕雪男, 吴桐, 郑子薇, 张越, 王志刚, 徐伟慧. 一株番茄青枯病生防细菌的筛选、鉴定及其生防潜力分析[J]. 生物技术通报, 2025, 41(1): 276-286. |
[2] | 饶峻, 赵晨, 李端华, 廖豪, 黄加雨, 王辂. 自诱导策略在麦角硫因生物合成中的应用[J]. 生物技术通报, 2025, 41(1): 333-346. |
[3] | 马博涛, 伍国强, 魏明. bZIP转录因子在植物逆境胁迫响应和生长发育中的作用[J]. 生物技术通报, 2024, 40(9): 148-160. |
[4] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[5] | 韩钟娆, 霍毅欣, 郭淑元. 芽胞杆菌耐受胁迫条件的机制及工业应用[J]. 生物技术通报, 2024, 40(8): 24-38. |
[6] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[7] | 杜仲阳, 杨泽, 梁梦静, 刘义珍, 崔红利, 史达明, 薛金爱, 孙岩, 张春辉, 季春丽, 李润植. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应[J]. 生物技术通报, 2024, 40(7): 183-196. |
[8] | 马想蓉, 马欣, 陈胤勋, 龙启福, 王嵘, 邢江娃. 柴达木盆地昆特依盐湖可培养嗜盐细菌多样性研究[J]. 生物技术通报, 2024, 40(7): 285-298. |
[9] | 刘文浩, 吴刘记, 徐芳. 小肽调控植物分生组织发育的机制及其在作物改良中的研究进展[J]. 生物技术通报, 2024, 40(7): 1-18. |
[10] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[11] | 刘传和, 贺涵, 邵雪花, 何秀古. 不同覆盖处理对菠萝园土壤代谢物和细菌群落结构的影响[J]. 生物技术通报, 2024, 40(7): 247-258. |
[12] | 隆静, 陈婧敏, 刘霄, 张一凡, 周利斌, 杜艳. 植物DNA双链断裂修复机制及其在重离子诱变和基因编辑中的作用[J]. 生物技术通报, 2024, 40(7): 55-67. |
[13] | 张震宇, 靳莉武, 王婧尊, 田玲, 乔自林, 杨迪, 阿依木古丽·阿不都热依木. 动物细胞永生化研究进展[J]. 生物技术通报, 2024, 40(7): 78-89. |
[14] | 王迪, 张晓宇, 宋宇鑫, 郑东然, 田静, 李玉花, 王宇, 吴昊. 细胞全能性转录因子调控植物组培再生的分子机制研究进展[J]. 生物技术通报, 2024, 40(6): 23-33. |
[15] | 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 76
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||