生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 308-318.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0482
• 研究报告 • 上一篇
张雨1(), 周椿富2, 彭益萱1, 张家豪1, 尹心如1, 乔策策1, 谢越1, 汪建飞1, 王翔1(
)
收稿日期:
2024-05-24
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
王翔,男,博士,讲师,研究方向 :环境微生物学;E-mail: wangxiang@ahstu.edu.cn作者简介:
张雨,女,硕士研究生,研究方向 :环境微生物学;E-mail: 1561644121@qq.com
基金资助:
ZHANG Yu1(), ZHOU Chun-fu2, PENG Yi-xuan1, ZHANG Jia-hao1, YIN Xin-ru1, QIAO Ce-ce1, XIE Yue1, WANG Jian-fei1, WANG Xiang1(
)
Received:
2024-05-24
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 从中药渣中分离筛选高效纤维素降解菌株,用于中药渣的腐解,提高资源化利用程度。 方法 采用CMC-Na平板法对纤维素降解菌进行初步筛选,结合刚果红染色法和滤纸条崩解试验进行复筛,通过生理生化及16S rDNA分子生物学进行鉴定,选择不同生长和抗生素培养条件研究菌株纤维素酶活力,并以中药渣为唯一碳源检测菌株的降解能力。 结果 从中药渣中分离筛选获得3株具有纤维素降解能力的菌株,经鉴定H-1、Z-1为Bacillus sp.,Z-2为Niallia sp.。菌株H-1、Z-1最佳产酶条件为装液量10 mL/50 mL、pH 6、30℃;菌株Z-2最佳产酶条件为装液量10 mL/50 mL、pH 7、37℃,添加土霉素和恩诺沙星对菌株H-1、Z-1、Z-2的酶活力影响不显著。菌株H-1、Z-1和Z-2的中药渣降解率分别为56.37%、54.76%和41.53%,纤维素降解率分别为22.12%、20.01%和9.78%。 结论 筛选获得的3株菌具有良好的纤维素酶活力,且不受抗生素影响,对中药渣具有较好的降解效果。
张雨, 周椿富, 彭益萱, 张家豪, 尹心如, 乔策策, 谢越, 汪建飞, 王翔. 中药渣中纤维素降解菌的筛选及降解特性[J]. 生物技术通报, 2025, 41(3): 308-318.
ZHANG Yu, ZHOU Chun-fu, PENG Yi-xuan, ZHANG Jia-hao, YIN Xin-ru, QIAO Ce-ce, XIE Yue, WANG Jian-fei, WANG Xiang. Screening and Degrading Characteristics of Cellulose-degrading Strains in Chinese Herb Residues[J]. Biotechnology Bulletin, 2025, 41(3): 308-318.
图1 菌株产透明圈能力A:CMC-Na平板中菌落情况 B:CMC-Na平板中透明圈情况
Fig. 1 Capacity of strain producing hydrolytic circlesA: Colony condition in CMC-Na plate. B: Hydrolysis circle in CMC-Na plate
菌株编号 Strain No. | 形态 Shape | 边缘 Edge | 颜色 Color | 凸起 Hump | 湿润 Moist | 光滑 Slick | 透明 Transparency | 光泽 Gloss |
---|---|---|---|---|---|---|---|---|
H-1 | 圆形 | 完整 | 白色 | - | + | + | 不透明 | + |
H-2 | 不规则 | 撕裂状 | 淡黄色 | - | + | - | 不透明 | + |
H-3 | 絮状 | 不完整 | 白色 | - | - | - | 不透明 | - |
H-4 | 树枝状 | 波纹状 | 白色 | - | - | - | 不透明 | - |
H-5 | 不规则 | 不完整 | 乳脂色 | + | - | - | 不透明 | - |
Z-1 | 圆形 | 完整 | 白色 | - | - | - | 不透明 | + |
Z-2 | 圆形 | 完整 | 白色 | - | + | + | 半透明 | + |
Z-3 | 絮状 | 不完整 | 白色 | + | - | - | 不透明 | - |
Z-4 | 圆形 | 完整 | 淡粉色 | + | + | + | 不透明 | + |
Z-5 | 不规则 | 不完整 | 白色 | - | - | - | 不透明 | - |
表1 菌株的形态结构
Table 1 Morphological structure of strain
菌株编号 Strain No. | 形态 Shape | 边缘 Edge | 颜色 Color | 凸起 Hump | 湿润 Moist | 光滑 Slick | 透明 Transparency | 光泽 Gloss |
---|---|---|---|---|---|---|---|---|
H-1 | 圆形 | 完整 | 白色 | - | + | + | 不透明 | + |
H-2 | 不规则 | 撕裂状 | 淡黄色 | - | + | - | 不透明 | + |
H-3 | 絮状 | 不完整 | 白色 | - | - | - | 不透明 | - |
H-4 | 树枝状 | 波纹状 | 白色 | - | - | - | 不透明 | - |
H-5 | 不规则 | 不完整 | 乳脂色 | + | - | - | 不透明 | - |
Z-1 | 圆形 | 完整 | 白色 | - | - | - | 不透明 | + |
Z-2 | 圆形 | 完整 | 白色 | - | + | + | 半透明 | + |
Z-3 | 絮状 | 不完整 | 白色 | + | - | - | 不透明 | - |
Z-4 | 圆形 | 完整 | 淡粉色 | + | + | + | 不透明 | + |
Z-5 | 不规则 | 不完整 | 白色 | - | - | - | 不透明 | - |
图2 滤纸崩解情况A:菌株H-1培养3 d滤纸崩解情况;B:菌株Z-1培养3 d滤纸崩解情况;C:菌株Z-2培养3 d滤纸崩解情况;D:菌株H-1培养7 d滤纸崩解情况;E:菌株Z-1培养7 d滤纸崩解情况;F:菌株Z-2培养7 d滤纸崩解情况
Fig. 2 Disintegration of filter paperA: Disintegration of filter paper cultured with strain H-1 for 3 d. B: Disintegration of filter paper cultured with strain Z-1 for 3 d. C: Disintegration of filter paper cultured with strain Z-2 for 3 d. D: Disintegration of filter paper cultured with strain H-1 for 7 d. E: Disintegration of filter paper cultured with strain Z-1 for 7 d. F: Disintegration of filter paper cultured with strain Z-2 for 7 d
图3 菌落形态和革兰氏染色A:菌株H-1在LB上的菌落形态;B:菌株Z-1在LB上的菌落形态;C:菌株Z-2在LB上的菌落形态;D:菌株H-1在光学显微镜中形态(1 000×);E:菌株Z-1在光学显微镜中形态(1 000×);F:菌株Z-2在光学显微镜中形态(1 000×)
Fig. 3 Colony morphology and Gram stainingA: Morphology of strain H-1 in LB. B: Morphology of strain Z-1 in LB. C: Morphology of strain Z-2 in LB. D: Morphology of strain H-1 under optical microscope (1 000×). E: Morphology of strain Z-1 under optical microscope (1 000×). F: Morphology of strain Z-2 in light microscope (1 000×)
项目 Item | 结果 Results | ||
---|---|---|---|
H-1 | Z-1 | Z-2 | |
葡萄糖 Glucose | + | + | + |
明胶 Gelatin | + | + | - |
运动性 Moveability | + | + | + |
硫化氢Hydrothion | - | - | - |
表2 部分生化特征
Table 2 Biochemical characteristics
项目 Item | 结果 Results | ||
---|---|---|---|
H-1 | Z-1 | Z-2 | |
葡萄糖 Glucose | + | + | + |
明胶 Gelatin | + | + | - |
运动性 Moveability | + | + | + |
硫化氢Hydrothion | - | - | - |
图5 不同装液量对菌株H-1、Z-1和Z-2酶活力的影响A:不同装液量对菌株滤纸酶活力的影响;B:不同装液量对菌株内切酶活力的影响;C:不同装液量对菌株外切酶活力的影响
Fig. 5 Effects of different liquid loadings on the enzyme activities of strain H-1, Z-1, and Z-2A: Effect of different liquid loading on strain filter paper enzyme activity. B: Effect of different liquid loading on strain incision enzyme activity. C: Effect of different liquid loading on strain excision enzyme activity
图6 不同pH对菌株H-1、Z-1和Z-2酶活力的影响A:pH对菌株滤纸酶活力的影响;B:pH对菌株内切酶活力的影响;C:pH对菌株外切酶活力的影响
Fig. 6 Effects of pH on the enzyme activities of strain H-1, Z-1, and Z-2A: Effect of pH on strain filter paper enzyme activity. B: Effect of pH on strain incision enzyme activity. C: Effect of pH on strain excision enzyme activity
图7 温度对菌株H-1、Z-1和Z-2酶活力的影响A:温度对菌株滤纸酶活力的影响;B:温度对菌株内切酶活力的影响;C:温度对菌株外切酶活力的影响
Fig. 7 Effects of temperatures on the enzyme activities of strain H-1, Z-1, and Z-2A: Effect of different temperature on strain filter paper enzyme activity. B: Effect of temperature on strain incision enzyme activity. C: Effect of temperature on strain excision enzyme activity
图8 不同抗生素对菌株H-1、Z-1和Z-2酶活力的影响A:不同抗生素对菌株滤纸酶活力的影响;B:不同抗生素对菌株内切酶活力的影响;C:不同抗生素对菌株外切酶活力的影响,不同字母代表差异显著(P<0.05)
Fig. 8 Effects of different antibiotics on the enzyme activities of strain H-1, Z-1, and Z-2A: Effect of adding different antibiotics on strain filter paper enzyme activity. B: Effect of adding different antibiotics on strain incision enzyme activity. C: Effect of adding different antibiotics on strain excision enzyme activity, Different letters indicate significant differences (P<0.05)
1 | 刘仪, 汪晶晶, 张晓春. 中国中药产品出口贸易现状及特征分析 [J]. 黑龙江农业科学, 2023(4): 77-82. |
Liu Y, Wang JJ, Zhang XC. Export status and characteristics of Chinese traditional herbal medicine products in China [J]. Heilongjiang Agric Sci, 2023(4): 77-82. | |
2 | He Q, Bai Y, Lu YX, et al. Isolation and characterization of cellulose nanocrystals from Chinese medicine residues [J]. Biomass Convers Biorefin, 2022: 1-10. |
3 | Li YZ, Xu TT, Lin CQ, et al. Determination of lignocellulosic components in traditional Chinese herb residues and its sugar-producing application [J]. Waste Biomass Valorization, 2023, 14(6): 1891-1903. |
4 | Xin SZ, Huang F, Liu XY, et al. Torrefaction of herbal medicine wastes: characterization of the physicochemical properties and combustion behaviors [J]. Bioresour Technol, 2019, 287: 121408. |
5 | Xiao JJ, Xu X, Wang F, et al. Analysis of exposure to pesticide residues from Traditional Chinese Medicine [J]. J Hazard Mater, 2019, 365: 857-867. |
6 | Zhao XX, Chen TT, Meng FJ, et al. Therapeutic effect of herb residue fermentation supernatant on spleen-deficient mice [J]. Mol Med Rep, 2018, 17(2): 2764-2770. |
7 | Li XY, Xiao Y, Feng YG, et al. The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation [J]. Enzyme Microb Technol, 2018, 115: 52-61. |
8 | 宋修超, 黑若楠, 姚怡, 等. 不同中药渣组合好氧堆肥产物对土壤碳矿化特性的影响 [J]. 土壤, 2023, 55(1): 45-52. |
Song XC, Hei RN, Yao Y, et al. Effects of compost products of different Chinese medicinal residues on soil carbon mineralization [J]. Soils, 2023, 55(1): 45-52. | |
9 | Saha A, Basak BB. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants [J]. Ind Crops Prod, 2020, 145: 111979. |
10 | Ma JF, Chen YP, Zhao Y, et al. Effects of traditional Chinese medicine residue on plant growth and soil properties: a case study with maize (Zea mays L.) [J]. Environ Sci Pollut Res Int, 2019, 26(32): 32880-32890. |
11 | 周雅婷, 刘颖, 毕亚男, 等. 淫羊藿水提物及提取药渣的抗骨质疏松药效比较研究 [J]. 天津中医药大学学报, 2020, 39(1): 87-91. |
Zhou YT, Liu Y, Bi YN, et al. Comparative study on anti-osteoporosis efficacy of Epimedium water extract and its residue [J]. J Tianjin Univ Tradit Chin Med, 2020, 39(1): 87-91. | |
12 | 刘国宇, 肖军, 刘娜, 等. 中药渣栽培平菇培养基质配方筛选试验 [J]. 园艺与种苗, 2016, 36(9): 28-30. |
Liu GY, Xiao J, Liu N, et al. Study on the optimal formula of Pleurotus ostreatus cultivation with herbal residues [J]. Hortic Seed, 2016, 36(9): 28-30. | |
13 | 李芳蓉, 李宏伟, 田永峰, 等. 中药渣固态发酵生产蛋白饲料研究与应用 [J]. 饲料研究, 2019, 42(4): 94-99. |
Li FR, Li HW, Tian YF, et al. Research and application of protein feed in solid-state fermentation of traditional Chinese medicine residue [J]. Feed Res, 2019, 42(4): 94-99. | |
14 | 张建华, 郭玉双, 田光明, 等. 三种堆肥对番茄生长及青枯病防治效果的影响 [J]. 植物营养与肥料学报, 2012, 18(5): 1185-1192. |
Zhang JH, Guo YS, Tian GM, et al. Effects of three composts on growth and bacterial wilt of tomato [J]. Plant Nutr Fertil Sci, 2012, 18(5): 1185-1192. | |
15 | 任丽丽. 中药渣发酵制备有机肥的研究 [D]. 天津: 天津中医药大学, 2020. |
Ren LL. Study on preparation of organic fertilizer by fermentation of traditional Chinese medicine residue [D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2020. | |
16 | 周椿富, 于锐, 王翔, 等. 抗生素对不同土壤中酶活性的影响 [J]. 生态环境学报, 2022, 31(11): 2234-2241. |
Zhou CF, Yu R, Wang X, et al. Effects of antibiotics on soil enzyme activities in different soils [J]. Ecol Environ Sci, 2022, 31(11): 2234-2241. | |
17 | Chen XM, Cheng WT, Li SZ, et al. The "quality" and "quantity" of microbial species drive the degradation of cellulose during composting [J]. Bioresour Technol, 2021, 320: 124425. |
18 | 尹陈茜, 刘向东, 杨吉龙, 等. 不同菌种对中药渣堆肥过程及成分的影响 [J]. 甘肃农业大学学报, 2020, 55(3): 97-104, 112. |
Yin CX, Liu XD, Yang JL, et al. Influence of different microbe strains on composting process and components of Chinese herbal residues [J]. J Gansu Agric Univ, 2020, 55(3): 97-104, 112. | |
19 | 曾飞, 张森, 钱大玮, 等. 甘草药渣降解菌的筛选及其产酶工艺研究 [J]. 生物技术通报, 2017, 33(12): 125-131. |
Zeng F, Zhang S, Qian DW, et al. Screening the strains degrading glycyrrhiz uralensis residues and its enzyme production [J]. Biotechnol Bull, 2017, 33(12): 125-131. | |
20 | 蔡瑞, 徐春城. 堆肥用微生物及其效果研究进展 [J]. 中国土壤与肥料, 2019(5): 1-7. |
Cai R, Xu CC. Research progress on microorganisms commonly used in composting and their effects [J]. Soil Fertil Sci China, 2019(5): 1-7. | |
21 | 朱屹, 李俊良, 焦博, 等. 整合宏组学方法研究番茄与玉米秸秆共堆肥生境中的关键微生物及其功能 [J]. 福建农业学报, 2020, 35(7): 764-772. |
Zhu Y, Li JL, Jiao B, et al. Functional microorganisms in tomato stalks/maize straws co-compost unveiled by integrated meta-omics [J]. Fujian J Agric Sci, 2020, 35(7): 764-772. | |
22 | Zhang GY, Dong YJ. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization [J]. Front Microbiol, 2022, 13: 957444. |
23 | Helal GA, Khalil RR, Galal YG, et al. Studies on cellulases of some cellulose-degrading soil fungi [J]. Arch Microbiol, 2021, 204(1): 65. |
24 | Li DP, Feng L, Liu KR, et al. Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China [J]. Cellulose, 2016, 23(2): 1335-1347. |
25 | 沙沙, 刘心怡, 张玉林, 等. 一株产纤维素酶的暹罗芽孢杆菌筛选及产酶条件优化 [J]. 河南科学, 2019, 37(7): 1073-1081. |
Sha S, Liu XY, Zhang YL, et al. UV mutagenesis and fermentation conditions optimization of a Cellulase-producing marine Bacillus siamensis [J]. Henan Sci, 2019, 37(7): 1073-1081. | |
26 | 唐玉佳, 陈欣, 夏萍, 等. 纤维素降解菌N32产酶条件优化及其酶学性质 [J]. 东北农业科学, 2021, 46(2): 62-65, 81. |
Tang YJ, Chen X, Xia P, et al. Optimization of enzyme production condition for cellulose-degrading strain N32 and enzymatic characterization [J]. J Northeast Agric Sci, 2021, 46(2): 62-65, 81. | |
27 | 布坎南(R.E.Buchanan). 伯杰细菌鉴定手册: 第八版 [M]. 8版. 北京: 科学出版社, 1984. |
Buchanan RE. Bergey's manual of determinative bacteriology [M]. 8th ed. Beijing: Science Press, 1984. | |
28 | Li F, Xie YJ, Gao X, et al. Screening of cellulose degradation bacteria from Min pigs and optimization of its cellulase production [J]. Electron J Biotechnol, 2020, 48: 29-35. |
29 | Ghose TK, Bisaria VS. Measurement of hemicellulase activities: part I xylanases [J]. Pure Appl Chem, 1987, 59(12): 1739-1751. |
30 | 萨如拉, 高聚林, 于晓芳, 等. 玉米秸秆低温降解复合菌系的筛选 [J]. 中国农业科学, 2013, 46(19): 4082-4090. |
Sa RL, Gao JL, Yu XF, et al. Screening of low temperature maize stalk decomposition microorganism [J]. Sci Agric Sin, 2013, 46(19): 4082-4090. | |
31 | 安琪, 员瑗, 戴玉成, 等. 木质纤维素降解真菌菌株筛选及对玉米秸秆的生物降解研究 [J]. 菌物学报, 2023, 42(3): 782-792. |
An Q, Yun Y, Dai YC, et al. Screening of lignocellulose degrading fungal strains and their biodegradation of corn straw [J]. Mycosystema, 2023, 42(3): 782-792. | |
32 | Hu LB, Luo YP, Cai B, et al. The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system [J]. Green Chem, 2014, 16(6): 3107-3116. |
33 | 司徒成, 余天华, 宋宇欣. 不同食用菌对猕猴桃枝木质纤维素降解的比较 [J]. 北方园艺, 2022(5): 111-118. |
Situ C, Yu TH, Song YX. Comparison on lignocellulose degradation of kiwifruit branches by different edible fungi [J]. North Hortic, 2022(5): 111-118. | |
34 | 孙愉, 张昊, 李畅洋, 等. 牛源抗氧化芽孢杆菌的分离鉴定及生物特性研究 [J]. 中国畜牧兽医, 2023, 50(1): 359-367. |
Sun Y, Zhang H, Li CY, et al. Isolation, identification and biological characteristics of antioxidant Bacillus from cattle [J]. China Anim Husb Vet Med, 2023, 50(1): 359-367. | |
35 | 曾文婷, 覃绍敏, 吴健敏, 等. 竹鼠肠道纤维素降解菌的分离鉴定及其产酶特性研究 [J]. 动物营养学报, 2021, 33(7): 4142-4152. |
Zeng WT, Qin SM, Wu JM, et al. Isolation, identification and enzyme production characteristics of cellulolytic bacterium from intestine of bamboo rats [J]. Chin J Anim Nutr, 2021, 33(7): 4142-4152. | |
36 | 王永伦, 余克非, 郑展望. 1株耐高温纤维素降解菌发酵条件优化与秸秆降解应用 [J]. 江苏农业科学, 2023, 51(19): 229-236, 244. |
Wang YL, Yu KF, Zheng ZW. Optimization of fermentation conditions and application of straw degradation by a thermostable cellulose degrading strain [J]. Jiangsu Agric Sci, 2023, 51(19): 229-236, 244. | |
37 | Sathitkowitchai W, Sathapondecha P, Angthong P, et al. Isolation and characterization of mannanase-producing bacteria for potential synbiotic application in shrimp farming [J]. Animals, 2022, 12(19): 2583. |
38 | Srivastava S, Dafale NA. Genomic dissection of Niallia sp. for potential application in lignocellulose hydrolysis and bioremediation [J]. Arch Microbiol, 2023, 206(1): 2. |
39 | Zhang Y, Yang JS, Luo LJ, et al. Low-cost cellulase-hemicellulase mixture secreted by Trichoderma harzianum EM0925 with complete saccharification efficacy of lignocellulose [J]. Int J Mol Sci, 2020, 21(2): 371. |
40 | 杨梦莹, 庞坤容, 潘江欣, 等. 一株可高效降解羽毛的铜绿假单胞菌的分离、鉴定、产酶条件优化及其酶活研究 [J]. 微生物学报, 2022, 62(3): 968-981. |
Yang MY, Pang KR, Pan JX, et al. Isolation, identification, optimization of enzyme-producing conditions and enzymatic activity of a feather-degradable Pseudomonas aeruginosa strain [J]. Acta Microbiologica Sinica, 2022, 62(3): 968-981. | |
41 | 黄晓梅, 赵红晓, 范金霞, 等. 一株高产纤维素酶绿色木霉菌株诱变选育与发酵研究 [J]. 东北农业大学学报, 2018, 49(6): 22-31. |
Huang XM, Zhao HX, Fan JX, et al. Study on mutation breeding and fermentation of a Trichoderma viride with high yield of cellulase [J]. J Northeast Agric Univ, 2018, 49(6): 22-31. | |
42 | 康润泽, 钱斯日古楞, 倪巍洪, 等. 土霉素菌渣降解菌的筛选及应用条件优化 [J]. 生物学杂志, 2022, 39(3): 83-87. |
Kang RZ, Qian SRGL, Ni WH, et al. Screening and optimization of application conditions of Terramycin bacteria residue degrading bacteria [J]. J Biol, 2022, 39(3): 83-87. | |
43 | 张薇, 张萌, 陈凯, 等. 恩诺沙星和铜复合污染对蚯蚓消化酶活性的影响 [J]. 应用生态学报, 2019, 30(6): 2049-2055. |
Zhang W, Zhang M, Chen K, et al. Effects of enrofloxacin and Cu combined pollution on the activities of digestive enzymes of earthworm in soil [J]. Chin J Appl Ecol, 2019, 30(6): 2049-2055. | |
44 | 杜婕, 宋修超, 马艳. 中药渣堆肥微生物群落结构及纤维素降解酶基因表达量变化特征[J]. 江苏农业学报, 2022, 38(2): 352-360. |
Du J, Song XC, Ma Y. Chang characteristics of microbial community structure and cellulose degrading enzyme gene expression level in Chinese medicine residue compost [J]. Jiangsu Journal of Agricultural Science, 2022, 38(2): 352-360. | |
45 | 曹平华, 李晓霞, 李旺, 等. 1株烟曲霉产耐热纤维素酶发酵条件优化及酶学性质研究 [J]. 中国畜牧兽医, 2023, 50(11): 4414-4423. |
Cao PH, Li XX, Li W, et al. Optimization of fermentation conditions and enzymatic characteristics of the thermophilic cellulase from Aspergillus fumigatus [J]. China Anim Husb Vet Med, 2023, 50(11): 4414-4423. | |
46 | Badhan AK, Chadha BS, Sonia KG, et al. Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099 [J]. Enzyme Microb Technol, 2004, 35(5): 460-466. |
47 | 陆祖瑜. 中药渣降解复合菌筛选及苦参渣堆肥特性研究 [D]. 北京: 中国中医科学院, 2022. |
Lu ZY. Screening of compound bacteria for degradation of traditional Chinese medicine residue and study on composting characteristics of Sophora flavescens residue [D]. Beijing: China Academy of Chinese Medical Sciences, 2022. | |
48 | 王景, 陈曦, 魏俊岭. 水稻秸秆和玉米秸秆在好气和厌氧条件下的腐解规律 [J]. 农业资源与环境学报, 2017, 34(1): 59-65. |
Wang J, Chen X, Wei JL. Decomposition of rice straw and corn straw under aerobic and anaerobic conditions [J]. J Agric Resour Environ, 2017, 34(1): 59-65. | |
49 | 陶治东, 何艳慧, 邓子禾, 等. 香菇菌渣高效纤维素降解菌的筛选及产酶优化 [J]. 生物技术通报, 2021, 37(11): 158-165. |
Tao ZD, He YH, Deng ZH, et al. Screening of high-efficiency cellulose-degrading microorganism from spent Lentinula edodes substrate and optimization of its enzyme production [J]. Biotechnol Bull, 2021, 37(11): 158-165. |
[1] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[2] | 李冲, 杨亚楠, 王翠霞, 郑海鑫. 微生物-生物炭协同修复农业环境中的多元污染物[J]. 生物技术通报, 2024, 40(10): 86-97. |
[3] | 周振超, 郑吉, 帅馨怡, 林泽俊, 陈红. 高通量分析人类粪便、皮肤和水环境中共享抗生素抗性基因的分布[J]. 生物技术通报, 2023, 39(7): 288-297. |
[4] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[5] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[6] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[7] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[8] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[9] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[10] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[11] | 李柳, 穆迎春, 刘璐, 张洪玉, 徐锦华, 杨臻, 乔璐, 宋金龙. 氟喹诺酮类抗生素及耐药基因污染控制的研究进展[J]. 生物技术通报, 2022, 38(9): 84-95. |
[12] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[13] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[14] | 朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73. |
[15] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||