生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 202-209.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0632
• 研究报告 • 上一篇
李晶晶(), 胡进红, 梁旺利, 麻玉荣, 梁文裕, 王玲霞(
)
收稿日期:
2024-07-03
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
王玲霞,女,博士,副教授,研究方向 :植物生理与分子生物学;E-mail: lxwang@nxu.edu.cn作者简介:
李晶晶,女,硕士研究生,研究方向 :植物资源保护与利用;E-mail: l1210701444@163.com
基金资助:
LI Jing-jing(), HU Jin-hong, LIANG Wang-li, MA Yu-rong, LIANG Wen-yu, WANG Ling-xia(
)
Received:
2024-07-03
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 探究盐胁迫下‘宁杞1号’(Lycium barbarum Ningqi 1)信号转导途径相关基因差异表达规律,为深入解析‘宁杞1号’耐盐碱的分子机理奠定基础。 方法 基于转录组测序技术,对不同浓度NaCl胁迫下‘宁杞1号’叶片信号转导途径相关基因的差异表达进行分析,同时,对信号转导途径相关酶活性进行测定。 结果 (1)在0、100、200和300 mmol/L NaCl胁迫处理7 d时,从‘宁杞1号’叶片中共鉴定到3个信号转导途径和14个信号转导相关基因差异表达。(2)随着NaCl浓度的增加,CIPK6的相对表达量呈下降趋势;MAPKK2的相对表达量呈上升趋势;MAPKKK18和MAPK3的相对表达量呈先升后降的趋势,RT-qPCR验证结果与RNA-seq测序结果基本一致。(3)随着NaCl浓度的增加,CIPK6、MAPKK2和MAPKKK18酶活性呈先升高后不变的趋势;MAPK3和PLD酶活性显著高于对照组;钙调素的含量随NaCl浓度增加而增加。 结论 ‘宁杞1号’可能通过诱导磷脂酰肌醇、MAPK级联反应及依赖Ca2+的SOS信号转导相关基因的差异表达响应NaCl胁迫,进而提高其耐盐性。
李晶晶, 胡进红, 梁旺利, 麻玉荣, 梁文裕, 王玲霞. ‘宁杞1号’响应NaCl胁迫相关基因的差异表达分析[J]. 生物技术通报, 2025, 41(2): 202-209.
LI Jing-jing, HU Jin-hong, LIANG Wang-li, MA Yu-rong, LIANG Wen-yu, WANG Ling-xia. Differential Expression Analysis of Genes Related to NaCl Stress Response in Lycium barbarum 'Ningqi 1'[J]. Biotechnology Bulletin, 2025, 41(2): 202-209.
图1 盐胁迫处理7 d后的‘宁杞1号’幼苗A: 0 mmol/L NaCl; B: 100 mmol/L NaCl; C: 200 mmol/L NaCl; D: 300 mmol/L NaCl. The same below
Fig. 1 Samples of L. barbarum 'Ningqi 1' seedlings under salt stress for 7 d
基因名称 Gene name | 引物名称 Primer name | 序列 Sequence (5′‒3′) |
---|---|---|
actin | actin-F | GGTCCTCTTCCAGCCATCCAT |
actin-R | TGAGCCACCACTGAGCACAA | |
CIPK6 | CIPK6-F | CTTTCTCCCACACTCTTGCCCTTG |
CIPK6-R | GCTTGAGGAGGTGGCGAAAACG | |
MAPKKK18 | MAPKKK18-F | CGTATGTGTAGCTGTCACCAAGGC |
MAPKKK18-R | GTCTTGTTCCGCTTCCTGCTCAG | |
MAPKK2 | MAPKK2-F | GGCACCTCCTGAAATTCTCTCTGG |
MAPKK2-R | CTGGCAAGCACATCTGGACTGG | |
MAPK3 | MAPK3-F | GGCACCCCAACGGAATCTGATC |
MAPK3-R | CTGCTAACTGCTGGCGTGGATG |
表1 引物及内参基因名称与序列
Table 1 Primers and names and sequences of reference genes
基因名称 Gene name | 引物名称 Primer name | 序列 Sequence (5′‒3′) |
---|---|---|
actin | actin-F | GGTCCTCTTCCAGCCATCCAT |
actin-R | TGAGCCACCACTGAGCACAA | |
CIPK6 | CIPK6-F | CTTTCTCCCACACTCTTGCCCTTG |
CIPK6-R | GCTTGAGGAGGTGGCGAAAACG | |
MAPKKK18 | MAPKKK18-F | CGTATGTGTAGCTGTCACCAAGGC |
MAPKKK18-R | GTCTTGTTCCGCTTCCTGCTCAG | |
MAPKK2 | MAPKK2-F | GGCACCTCCTGAAATTCTCTCTGG |
MAPKK2-R | CTGGCAAGCACATCTGGACTGG | |
MAPK3 | MAPK3-F | GGCACCCCAACGGAATCTGATC |
MAPK3-R | CTGCTAACTGCTGGCGTGGATG |
基因名称 Gene name | B vs A | C vs A | D vs A | 基因注释 Gene description | |||
---|---|---|---|---|---|---|---|
差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | ||
MAPK3 | 1.78 | 0 | -1.12 | 6.18E-108 | -1.61 | 1.84E-232 | 有丝分裂原活化蛋白激酶3 Mitogen-activated protein kinase 3 |
MAPK4 | 1.48 | 2.88E-07 | 1.53 | 1.34E-09 | - | - | 有丝分裂原活化蛋白激酶4 Mitogen-activated protein kinase 4 |
MAPKK2 | 1.17 | 2.04E-224 | - | - | - | - | 有丝分裂原活化蛋白激酶激酶2 Mitogen-activated protein kinase kinase 2 |
MAPKKK18 | 4.88 | 0 | -3.63 | 2.30E-29 | -3.027 4 | 2.84E-32 | 有丝分裂原活化蛋白激酶激酶激酶18 Mitogen-activated protein kinase kinase kinase 18 |
GPAT1 | 1.51 | 1.45E-75 | -0.27 | 0 | 0.67 | 5.03E-18 | 甘油-3-磷酸酰基转移酶1 Glycerol-3-phosphate acyltransferase 1 |
GPAT6 | 1.05 | 5.12E-109 | - | - | - | - | 甘油-3-磷酸 2-O-酰基转移酶6 Glycerol-3-phosphate 2-O-acyltransferase 6 |
PLDα1 | 1.85 | 0 | 1.53 | 8.54E-253 | 1.06 | 1.71E-106 | 磷脂酶D α1 Phospholipase D α1 |
DGK1 | 2.89 | 2.25E-191 | 1.95 | 1.22E-76 | 1.04 | 6.46E-22 | 二酰基甘油激酶1 Diacylglycerol kinase 1 |
CBL4 | 1.56 | 1.67E-19 | -1.13 | 3.77E-07 | 3.28 | 9.49E-248 | 钙调磷酸酶B样蛋白4 Calcineurin B-like protein 4 |
CaM3 | - | - | 2.01 | 1.93E-25 | - | - | 钙调蛋白-3 Calmodulin-3 |
CaM2 | - | - | 3.12 | 0 | - | - | 钙调蛋白-2 Calmodulin-2 |
CaM | 0.64 | 5.68E-44 | 1.06 | 1.53E-170 | 1.06 | 4.64E-235 | 钙调蛋白 Calmodulin |
CIPK9 | -0.34 | 9.32E-31 | - | - | - | - | CBL相互作用的丝氨酸/苏氨酸蛋白激酶9 CBL-interacting serine/threonine-protein kinase 9 |
CIPK6 | -0.94 | 2.14E-15 | - | - | -1.48 | 7.62E-44 | CBL相互作用的丝氨酸/苏氨酸蛋白激酶6 CBL-interacting serine/threonine-protein kinase 6 |
表2 NaCl胁迫下‘宁杞1号’信号转导途径相关差异表达基因
Table 2 Differentially expressed genes related to signal transduction pathways under NaCl stress in L. barbarum 'Ningqi 1'
基因名称 Gene name | B vs A | C vs A | D vs A | 基因注释 Gene description | |||
---|---|---|---|---|---|---|---|
差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | 差异倍数 Log2Fold Change | P值 P value | ||
MAPK3 | 1.78 | 0 | -1.12 | 6.18E-108 | -1.61 | 1.84E-232 | 有丝分裂原活化蛋白激酶3 Mitogen-activated protein kinase 3 |
MAPK4 | 1.48 | 2.88E-07 | 1.53 | 1.34E-09 | - | - | 有丝分裂原活化蛋白激酶4 Mitogen-activated protein kinase 4 |
MAPKK2 | 1.17 | 2.04E-224 | - | - | - | - | 有丝分裂原活化蛋白激酶激酶2 Mitogen-activated protein kinase kinase 2 |
MAPKKK18 | 4.88 | 0 | -3.63 | 2.30E-29 | -3.027 4 | 2.84E-32 | 有丝分裂原活化蛋白激酶激酶激酶18 Mitogen-activated protein kinase kinase kinase 18 |
GPAT1 | 1.51 | 1.45E-75 | -0.27 | 0 | 0.67 | 5.03E-18 | 甘油-3-磷酸酰基转移酶1 Glycerol-3-phosphate acyltransferase 1 |
GPAT6 | 1.05 | 5.12E-109 | - | - | - | - | 甘油-3-磷酸 2-O-酰基转移酶6 Glycerol-3-phosphate 2-O-acyltransferase 6 |
PLDα1 | 1.85 | 0 | 1.53 | 8.54E-253 | 1.06 | 1.71E-106 | 磷脂酶D α1 Phospholipase D α1 |
DGK1 | 2.89 | 2.25E-191 | 1.95 | 1.22E-76 | 1.04 | 6.46E-22 | 二酰基甘油激酶1 Diacylglycerol kinase 1 |
CBL4 | 1.56 | 1.67E-19 | -1.13 | 3.77E-07 | 3.28 | 9.49E-248 | 钙调磷酸酶B样蛋白4 Calcineurin B-like protein 4 |
CaM3 | - | - | 2.01 | 1.93E-25 | - | - | 钙调蛋白-3 Calmodulin-3 |
CaM2 | - | - | 3.12 | 0 | - | - | 钙调蛋白-2 Calmodulin-2 |
CaM | 0.64 | 5.68E-44 | 1.06 | 1.53E-170 | 1.06 | 4.64E-235 | 钙调蛋白 Calmodulin |
CIPK9 | -0.34 | 9.32E-31 | - | - | - | - | CBL相互作用的丝氨酸/苏氨酸蛋白激酶9 CBL-interacting serine/threonine-protein kinase 9 |
CIPK6 | -0.94 | 2.14E-15 | - | - | -1.48 | 7.62E-44 | CBL相互作用的丝氨酸/苏氨酸蛋白激酶6 CBL-interacting serine/threonine-protein kinase 6 |
图2 NaCl胁迫下‘宁杞1号’信号转导途径相关差异表达基因韦恩图
Fig. 2 Venn diagram of differentially expressed genes related to signal transduction pathways under NaCl stress in L. barbarum 'Ningqi 1'
图3 NaCl胁迫下‘宁杞1号’信号转导途径相关差异表达基因相对表达量不同小写字母表示差异显著(P<0.05)。下同
Fig. 3 Relative expressions of differentially expressed genes related to signal transduction pathways under NaCl stress in L. barbarum 'Ningqi 1'Different small letters indicate significant difference (P<0.05) .The same below
图4 NaCl胁迫下‘宁杞1号’信号转导途径相关酶活性和钙调素含量的变化
Fig. 4 Changes in the activity of signal transduction pathways-related enzymes and calmodulin content under NaCl stress in L. barbarum 'Ningqi 1'
图5 NaCl胁迫下‘宁杞1号’号信号转导途径相关基因差异表达调控网络
Fig. 5 Regulatory network of signal transduction pathways related differentially expressed genes under NaCl stress in L. barbarum 'Ningqi 1'
1 | van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants [J]. Annu Rev Plant Biol, 2020, 71: 403-433. |
2 | Rahman MM, Mostofa MG, Keya SS, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. Int J Mol Sci, 2021, 22(19): 10733. |
3 | Tang RJ, Wang C, Li KL, et al. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries [J]. Trends Plant Sci, 2020, 25(6): 604-617. |
4 | 及华, 王琳, 张海新, 等. 药食同源植物‒‒枸杞 [J]. 现代农村科技, 2021(7): 125. |
Ji H, Wang L, Zhang HX, et al. Lycium barbarum L., a homologous plant of medicine and food [J]. Modern Rural Technology, 2021(7): 125. | |
5 | 刘雪霞, 范文强, 焦慧慧, 等. 基于转录组测序的宁夏枸杞不同品种果实活性成分合成差异表达基因分析 [J]. 生物工程学报, 2023, 39(7): 3015-3036. |
Liu XX, Fan WQ, Jiao HH, et al. Comparative analysis of differentially expressed genes for biosynthesis of active ingredients in fruits of different cultivars of Lycium barbarum L. based on transcriptome sequencing [J]. Chin J Biotechnol, 2023, 39(7): 3015-3036. | |
6 | 马晓蓉, 杨淑娟, 姚宁, 等. NaCl胁迫对宁夏枸杞叶和幼根显微及超微结构的影响 [J]. 西北植物学报, 2021, 41(12): 2087-2095. |
Ma XR, Yang SJ, Yao N, et al. Effect of NaCl stress on the microstructure and ultrastructure of leaves and young roots in Lycium barbarum [J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(12): 2087-2095. | |
7 | 梁敏. 盐胁迫下宁夏枸杞差异蛋白的筛选及离子转运相关基因的表达 [D]. 银川: 宁夏大学, 2019. |
Liang M. Screening of differential proteins and expression of ion transport related genes in Lycium barbarum L. in Ningxia under salt stress [D]. Yinchuan: Ningxia University, 2019. | |
8 | Lin S, Zeng SH, Biao A, et al. Integrative analysis of transcriptome and metabolome reveals salt stress orchestrating the accumulation of specialized metabolites in Lycium barbarum L. fruit [J]. Int J Mol Sci, 2021, 22(9): 4414. |
9 | 梁旺利, 于雯静, 胡进红, 等. NaCl胁迫下宁夏枸杞ABA代谢相关基因差异表达分析 [J]. 西北农业学报, 2024, 33(4): 664-672. |
Liang WL, Yu WJ, Hu JH, et al. Differential expression of ABA metabolism-related genes in Lycium barbarum under NaCl stress [J]. Acta Agric Boreali Occidentalis Sin, 2024, 33(4): 664-672. | |
10 | 姚晓翠. LbVHA-d2和LbVHA-a3基因在宁夏枸杞响应盐胁迫中的功能分析 [D]. 银川: 宁夏大学, 2023. |
Yao XC. Functional analysis of LbVHA-d2 and LbVHA-a3 genes in response to salt stress in Ningxia Lycium barbarum L. [D]. Yinchuan: Ningxia University, 2023. | |
11 | Yao XC, Meng LF, Zhao WL, et al. Changes in the morphology traits, anatomical structure of the leaves and transcriptome in Lycium barbarum L. under salt stress [J]. Front Plant Sci, 2023, 14: 1090366. |
12 | 钱玥, 饶良懿. 盐碱胁迫对枸杞幼苗生长与叶绿素荧光特性的影响 [J]. 森林与环境学报, 2022, 42(3): 271-278. |
Qian Y, Rao LY. Effects of saline-alkali stress on the growth and chlorophyll fluorescence characteristics of Lycium barbarum seedlings [J]. J For Environ, 2022, 42(3): 271-278. | |
13 | 宋繁, 胡进红, 梁旺利, 等. 盐胁迫下宁夏枸杞苯丙烷代谢相关基因差异表达分析 [J]. 西北植物学报, 2023, 43(8): 1286-1294. |
Song F, Hu JH, Liang WL, et al. Differential expression analysis of genes related to phenylpropane metabolism in Lycium barbarum under salt stress [J]. Acta Bot Boreali Occidentalia Sin, 2023, 43(8): 1286-1294. | |
14 | Rehman N, Khan MR, Abbas Z, et al. Functional characterization of Mitogen-Activated Protein Kinase Kinase (MAPKK) gene in Halophytic Salicornia europaea against salt stress [J]. Environ Exp Bot, 2020, 171: 103934. |
15 | Zhou XR, Wang MM, Yang L, et al. Comparative physiological and transcriptomic analyses of oat (Avena sativa) seedlings under salt stress reveal salt tolerance mechanisms [J]. Plants (Basel), 2024, 13(16): 2238. |
16 | Cao YL, Li YL, Fan YF, et al. Wolfberry genomes and the evolution of Lycium (Solanaceae) [J]. Commun Biol, 2021, 4(1): 671. |
17 | Wang WD, Zhao SH, Pi X, et al. Structural features of the diatom photosystem II-light-harvesting antenna complex [J]. FEBS J, 2020, 287(11): 2191-2200. |
18 | 柏杨, 章文华. 二酰甘油从头合成途径的关键酶及其功能 [J]. 植物生理学报, 2018, 54(12): 1763-1773. |
Bai Y, Zhang WH. Key enzymes for de novo synthesis of diacylglycerol in plant cells [J]. Plant Physiol J, 2018, 54(12): 1763-1773. | |
19 | Sui N, Tian SS, Wang WQ, et al. Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis [J]. Front Plant Sci, 2017, 8: 1337. |
20 | Cook R, Lupette J, Benning C. The role of chloroplast membrane lipid metabolism in plant environmental responses [J]. Cells, 2021, 10(3): 706. |
21 | Hou QC, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress [J]. Plant Cell Environ, 2016, 39(5): 1029-1048. |
22 | Sun MX, Liu XL, Gao HF, et al. Phosphatidylcholine enhances homeostasis in peach seedling cell membrane and increases its salt stress tolerance by phosphatidic acid [J]. Int J Mol Sci, 2022, 23(5): 2585. |
23 | Šamajová O, Plíhal O, Al-Yousif M, et al. Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases [J]. Biotechnol Adv, 2013, 31(1): 118-128. |
24 | Jia MR, Luo N, Meng XB, et al. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice [J]. J Genet Genomics, 2022, 49(8): 766-775. |
25 | Liu J, Wang XM, Yang L, et al. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus [J]. Protoplasma, 2020, 257(3): 965-977. |
26 | Li XY, Zhao J, Sun YH, et al. Arabidopsis thaliana CRK41 negatively regulates salt tolerance via H2O2 and ABA cross-linked networks [J]. Environ Exp Bot, 2020, 179: 104210. |
27 | Vadovič P, Šamajová O, Takáč T, et al. Biochemical and genetic interactions of phospholipase D alpha 1 and mitogen-activated protein kinase 3 affect Arabidopsis stress response [J]. Front Plant Sci, 2019, 10: 275. |
28 | Shu P, Li YJ, Li ZY, et al. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes [J]. Environ Exp Bot, 2022, 193: 104698. |
29 | Wang JL, Sun ZM, Chen CH, et al. The MKK2a gene involved in the MAPK signaling cascades enhances Populus salt tolerance [J]. Int J Mol Sci, 2022, 23(17): 10185. |
30 | Negi NP, Prakash G, Narwal P, et al. The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions [J]. Front Plant Sci, 2023, 14: 1248648. |
31 | Khan FS, Goher F, Paulsmeyer MN, et al. Calcium (Ca2+) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants [J]. Plant Biol, 2023, 25(7): 1025-1034. |
32 | Jiang ZH, Zhou XP, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx [J]. Nature, 2019, 572(7769): 341-346. |
33 | Kaya C, Uğurlar F, Adamakis ID S. Molecular mechanisms of CBL-CIPK signaling pathway in plant abiotic stress tolerance and hormone crosstalk [J]. Int J Mol Sci, 2024, 25(9): 5043. |
34 | Jamra G, Agarwal A, Singh N, et al. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana [J]. Plant Cell Rep, 2021, 40(11): 2205-2223. |
35 | Brindha C, Vasantha S, Raja AK, et al. Characterization of the salt overly sensitive pathway genes in sugarcane under salinity stress [J]. Physiol Plant, 2021, 171(4): 677-687. |
36 | Kumar G, Basu S, Singla-Pareek SL, et al. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice [J]. Physiol Plant, 2022, 174(1): e13638. |
37 | Steinhorst L, He GF, Moore LK, et al. A Ca2+-sensor switch for tolerance to elevated salt stress in Arabidopsis [J]. Dev Cell, 2022, 57(17): 2081-2094.e7. |
38 | Zhou Y, Zhu YF, Li W, et al. Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast [J]. Acta Physiol Plant, 2023, 45(4): 58. |
39 | Cho JH, Sim SC, Kim KN. Calcium sensor SlCBL4 associates with SlCIPK24 protein kinase and mediates salt tolerance in Solanum lycopersicum [J]. Plants (Basel), 2021, 10(10): 2173. |
[1] | 陈盈盈, 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 12-22. |
[2] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[3] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[4] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[5] | 李文姣, 张忠峰, 刘青, 孙洁, 杨利, 王兴军, 赵术珍. BRs在植物响应非生物胁迫中的作用[J]. 生物技术通报, 2022, 38(1): 228-235. |
[6] | 聂甲玥, 杨文文, 樊红霞, 王幼平, 吴德伟. 植物Pep短肽的研究进展[J]. 生物技术通报, 2021, 37(9): 219-225. |
[7] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[8] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[9] | 胡小倩, 张颖翌, 李鑫, 闫海芳. 植物中Remorin蛋白的研究进展[J]. 生物技术通报, 2020, 36(8): 136-143. |
[10] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12): 121-128. |
[11] | 于明香, 宋水山. 植物细胞中蛋白脂酰化修饰的生物学功能[J]. 生物技术通报, 2019, 35(8): 170-177. |
[12] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[13] | 刘晓威, 杨秀艳, 武海雯, 支晓蓉, 朱建峰, 张华新. NaCl胁迫对红砂萌发的影响及萌发期耐盐性评价[J]. 生物技术通报, 2019, 35(1): 27-34. |
[14] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13. |
[15] | 冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7): 24-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||