生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 181-189.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0635
• 研究报告 • 上一篇
吴夏明(), 杨敏, 周陈平, 邝瑞彬, 刘传和, 贺涵, 徐泽, 魏岳荣(
)
收稿日期:
2024-07-05
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
魏岳荣,男,博士,研究员,研究方向 :亚热带作物种质资源收集评价、细胞工程和分子育种;E-mail: weid18@163.com作者简介:
吴夏明,男,博士,助理研究员,研究方向 :草莓、番木瓜的遗传育种以及生物技术;E-mail: wuxiaming625@126.com
基金资助:
WU Xia-ming(), YANG Min, ZHOU Chen-ping, KUANG Rui-bin, LIU Chuan-he, HE Han, XU Ze, WEI Yue-rong(
)
Received:
2024-07-05
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 分析不同浓度褪黑素处理对草莓幼苗高温胁迫状态下的生长发育以及生理指标的影响,为草莓耐高温栽培技术的开发提供理论依据。 方法 以‘红颜’草莓幼苗为材料,采用灌根以及叶面喷施不同浓度的褪黑素处理,研究外源褪黑素处理对高温胁迫下草莓幼苗的生长发育以及生理特性的影响。 结果 高温胁迫下草莓幼苗生长受限,与对照相比,适宜浓度的褪黑素处理后其生长抑制可以缓解;草莓幼苗的净光合速率、蒸腾速率、气孔导度等光合作用参数显著上升;SOD、POD以及CAT等抗氧化酶的活性显著提高,脯氨酸含量显著提高;过氧化氢含量、超氧阴离子产生速率、相对电导率以及MDA含量显著下降,其中400 μmoL/L的处理效果最显著。 结论 高温胁迫下,400 μmoL/L的褪黑素处理可以通过提升草莓幼苗的光合作用效率,增强抗氧化酶活性,维持细胞膜的稳定性以及减少有害物质的累积,从而增强抵御高温逆境胁迫的能力。
吴夏明, 杨敏, 周陈平, 邝瑞彬, 刘传和, 贺涵, 徐泽, 魏岳荣. 不同浓度褪黑素处理对高温胁迫下草莓苗生理特性的影响[J]. 生物技术通报, 2025, 41(3): 181-189.
WU Xia-ming, YANG Min, ZHOU Chen-ping, KUANG Rui-bin, LIU Chuan-he, HE Han, XU Ze, WEI Yue-rong. Effects of Different Concentrations of Melatonin on the Physiological Characteristics of Strawberry Seedlings under High-temperature Stress[J]. Biotechnology Bulletin, 2025, 41(3): 181-189.
图1 不同浓度褪黑素处理对高温胁迫下草莓幼苗生长的影响a和b分别为高温处理第0天与第9天时各处理草莓幼苗的生长状态
Fig. 1 Effects of different concentrations of melatonin treatments on the growths of strawberry seedlings under high temperature stressa and b are the growth status of strawberry seedlings in each treatment at day 0 and day 9 of the high-temperature treatment, respectively
处理 Treatment | 地上部分鲜重 Fresh weight of aboveground parts/g | 地下部分鲜重 Fresh weight of underground parts/g | 地上部分干重 Dry weight of aboveground parts/g | 地下部分干重 Dry weight of underground parts/g |
---|---|---|---|---|
CK | 3.85±0.19 c | 4.32±0.15 b | 0.38±0.02 bc | 0.43±0.03 b |
100 MT | 4.05±0.22 bc | 4.32±0.23 b | 0.38±0.02 bc | 0.44±0.02 b |
200 MT | 3.81±0.23 c | 4.22±0.28 b | 0.36±0.02 c | 0.41±0.03 b |
300 MT | 4.29±0.17 b | 4.56±0.19 ab | 0.42±0.03 b | 0.46±0.04 b |
400 MT | 4.98±0.38 a | 4.87±0.14 a | 0.50±0.03 a | 0.52±0.03 a |
500 MT | 4.20±0.23 bc | 4.35±0.11 b | 0.38±0.03 bc | 0.44±0.01 b |
表1 不同浓度褪黑素处理对草莓幼苗生长指标的影响
Table 1 Effects of different concentrations of melatonin on growth characteristics of strawberry seedlings
处理 Treatment | 地上部分鲜重 Fresh weight of aboveground parts/g | 地下部分鲜重 Fresh weight of underground parts/g | 地上部分干重 Dry weight of aboveground parts/g | 地下部分干重 Dry weight of underground parts/g |
---|---|---|---|---|
CK | 3.85±0.19 c | 4.32±0.15 b | 0.38±0.02 bc | 0.43±0.03 b |
100 MT | 4.05±0.22 bc | 4.32±0.23 b | 0.38±0.02 bc | 0.44±0.02 b |
200 MT | 3.81±0.23 c | 4.22±0.28 b | 0.36±0.02 c | 0.41±0.03 b |
300 MT | 4.29±0.17 b | 4.56±0.19 ab | 0.42±0.03 b | 0.46±0.04 b |
400 MT | 4.98±0.38 a | 4.87±0.14 a | 0.50±0.03 a | 0.52±0.03 a |
500 MT | 4.20±0.23 bc | 4.35±0.11 b | 0.38±0.03 bc | 0.44±0.01 b |
处理 Treatment | 蒸腾速率 Transpiration rate/(mmol·m-2·s-1) | 净光合速率 Net photosynthesis rate/(µmol·m-²·s-¹) | 胞间CO2浓度 Intercellular CO2 concentration/(µmol·mol-1) | 气孔导度 Stomatal conductance/(mmol·m-²·s-¹) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 1.64±0.27 a | 0.45±0.15 b | 0.11±0.02 b | 0.05±0.01 c | 12.54±2.31 a | 3.16±0.81 d | 0.13±0.01 c | -2.16±0.48 b | 397.28±16.45 a | 387.03±19.77a | 365.85±4.42 a | 355.85±6.34 a | 56.41±4.75 a | 15.20±2.66 c | 5.63±0.93 c | 1.07±0.47 c |
100 MT | 1.66±0.35 a | 0.80±0.23 ab | 0.15±0.03 ab | 0.07±0.01 bc | 13.74±3.11 a | 5.32±1.04 c | 0.20±0.03 b | -1.87±0.33 b | 387.94±14.47 a | 372.02±13.80 ab | 339.89±15.43 ab | 333.23±8.29 bc | 54.91±5.83 a | 23.81±6.66 bc | 8.41±1.32 ab | 1.91±0.37 b |
200 MT | 1.66±0.17 a | 0.69±0.08 ab | 0.16±0.03 a | 0.07±0.01 bc | 12.67±1.84 a | 6.22±0.37 bc | 0.22±0.02 ab | -1.82±0.40 b | 396.26±22.65 a | 368.55±21.79 ab | 349.96±19.91 ab | 339.96±7.64 b | 58.97±5.24 a | 25.27±2.98 ab | 7.86±0.72 bc | 2.19±0.37 ab |
300 MT | 1.63±0.44 a | 0.93±0.30 a | 0.16±0.03 a | 0.06±0.01 bc | 13.34±2.25 a | 7.97±0.54 a | 0.22±0.02 ab | -1.72±0.17 b | 391.42±21.64 a | 344.81±33.55 bc | 339.93±24.13 ab | 329.93±10.60 bc | 55.26±3.93 a | 29.37±6.18 a | 8.61±1.06 ab | 2.34±0.22 ab |
400 MT | 1.74±0.47 a | 0.99±0.20 a | 0.17±0.02 a | 0.10±0.01 a | 13.07±1.67 a | 7.26±1.61 ab | 0.26±0.01 a | -0.53±0.16 a | 389.58±21.87 a | 328.02±18.17 c | 325.84±9.84 b | 319.17±7.05 c | 60.38±5.17 a | 36.70±5.55 a | 9.81±1.49 ab | 2.81±0.59 a |
500 MT | 1.71±0.36 a | 0.97±0.19 a | 0.16±0.01 a | 0.08±0.01 ab | 12.94±2.02 a | 6.81±0.99 abc | 0.25±0.05 ab | -0.55±0.12 a | 387.53±26.74 a | 350.93±11.19 abc | 336.22±5.52 b | 324.88±11.34 bc | 60.24±6.43 a | 37.18±5.45 a | 10.18±1.92 a | 2.31±0.41 ab |
表2 不同浓度褪黑素处理对草莓幼苗光合参数的影响
Table 2 Effects of different concentrations of melatonin on photosynthesis parameters of strawberry seedlings
处理 Treatment | 蒸腾速率 Transpiration rate/(mmol·m-2·s-1) | 净光合速率 Net photosynthesis rate/(µmol·m-²·s-¹) | 胞间CO2浓度 Intercellular CO2 concentration/(µmol·mol-1) | 气孔导度 Stomatal conductance/(mmol·m-²·s-¹) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 1.64±0.27 a | 0.45±0.15 b | 0.11±0.02 b | 0.05±0.01 c | 12.54±2.31 a | 3.16±0.81 d | 0.13±0.01 c | -2.16±0.48 b | 397.28±16.45 a | 387.03±19.77a | 365.85±4.42 a | 355.85±6.34 a | 56.41±4.75 a | 15.20±2.66 c | 5.63±0.93 c | 1.07±0.47 c |
100 MT | 1.66±0.35 a | 0.80±0.23 ab | 0.15±0.03 ab | 0.07±0.01 bc | 13.74±3.11 a | 5.32±1.04 c | 0.20±0.03 b | -1.87±0.33 b | 387.94±14.47 a | 372.02±13.80 ab | 339.89±15.43 ab | 333.23±8.29 bc | 54.91±5.83 a | 23.81±6.66 bc | 8.41±1.32 ab | 1.91±0.37 b |
200 MT | 1.66±0.17 a | 0.69±0.08 ab | 0.16±0.03 a | 0.07±0.01 bc | 12.67±1.84 a | 6.22±0.37 bc | 0.22±0.02 ab | -1.82±0.40 b | 396.26±22.65 a | 368.55±21.79 ab | 349.96±19.91 ab | 339.96±7.64 b | 58.97±5.24 a | 25.27±2.98 ab | 7.86±0.72 bc | 2.19±0.37 ab |
300 MT | 1.63±0.44 a | 0.93±0.30 a | 0.16±0.03 a | 0.06±0.01 bc | 13.34±2.25 a | 7.97±0.54 a | 0.22±0.02 ab | -1.72±0.17 b | 391.42±21.64 a | 344.81±33.55 bc | 339.93±24.13 ab | 329.93±10.60 bc | 55.26±3.93 a | 29.37±6.18 a | 8.61±1.06 ab | 2.34±0.22 ab |
400 MT | 1.74±0.47 a | 0.99±0.20 a | 0.17±0.02 a | 0.10±0.01 a | 13.07±1.67 a | 7.26±1.61 ab | 0.26±0.01 a | -0.53±0.16 a | 389.58±21.87 a | 328.02±18.17 c | 325.84±9.84 b | 319.17±7.05 c | 60.38±5.17 a | 36.70±5.55 a | 9.81±1.49 ab | 2.81±0.59 a |
500 MT | 1.71±0.36 a | 0.97±0.19 a | 0.16±0.01 a | 0.08±0.01 ab | 12.94±2.02 a | 6.81±0.99 abc | 0.25±0.05 ab | -0.55±0.12 a | 387.53±26.74 a | 350.93±11.19 abc | 336.22±5.52 b | 324.88±11.34 bc | 60.24±6.43 a | 37.18±5.45 a | 10.18±1.92 a | 2.31±0.41 ab |
处理 Treatment | SOD活性SOD enzyme activity/(U·g-1) | CAT活性CAT enzyme activity/(U·g-1) | POD活性POD enzyme activity/(U·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 72.36±3.47 a | 114.31±3.83 b | 125.22±4.43 c | 84.83±3.43 b | 96.61±7.50 a | 133.35±5.89 e | 159.58±3.98 c | 102.93±5.71 c | 37.28±4.64 a | 55.33±3.06 d | 76.48±4.62 d | 55.33±3.06 d |
100 MT | 78.54±4.88 a | 115.21±11.88 b | 132.31±4.56 bc | 86.30±4.63 b | 103.31±6.23 a | 150.86±9.72 de | 197.23±4.17 b | 109.26±5.98 bc | 38.53±5.24 a | 79.33±4.16 c | 95.87±7.64 c | 54.67±5.67 cd |
200 MT | 81.64±7.64 a | 130.01±7.78 a | 138.60±5.06 ab | 96.62±2.18 a | 106.87±8.79 a | 183.27±9.08 c | 210.17±7.74 b | 116.18±3.47 ab | 41.69±3.16 a | 80.67±7.02 c | 104.58±3.21 c | 57.38±3.06 c |
300 MT | 76.48±3.06 a | 126.73±2.01 ab | 133.15±5.93 bc | 96.83±1.17 a | 105.47±5.84 a | 156.47±5.71 d | 206.17±21.96 b | 110.78±4.31 bc | 43.63±5.14 a | 90.66±7.57 b | 129.34±8.08 b | 61.65±3.51 bc |
400 MT | 80.54±5.71 a | 136.47±10.71 a | 146.60±4.58 a | 102.58±8.22 a | 110.64±13.58 a | 239.07±26.25 a | 265.39±13.85 a | 119.82±5.77 a | 47.28±7.38 a | 107.64±3.51 a | 146.42±8.74 a | 69.43±4.16 a |
500 MT | 79.36±4.87 a | 126.04±5.05 ab | 140.92±6.20 ab | 97.91±2.26 a | 109.82±11.58 a | 210.62±7.74 b | 251.55±8.55 a | 116.71±4.10 ab | 43.85±5.54 a | 93.32±5.03 b | 135.46±5.86 ab | 66.32±4.04 ab |
表3 不同浓度褪黑素处理对草莓幼苗抗氧化酶活性的影响
Table 3 Effects of different concentrations of melatonin on antioxidant enzyme activities of strawberry seedlings
处理 Treatment | SOD活性SOD enzyme activity/(U·g-1) | CAT活性CAT enzyme activity/(U·g-1) | POD活性POD enzyme activity/(U·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 72.36±3.47 a | 114.31±3.83 b | 125.22±4.43 c | 84.83±3.43 b | 96.61±7.50 a | 133.35±5.89 e | 159.58±3.98 c | 102.93±5.71 c | 37.28±4.64 a | 55.33±3.06 d | 76.48±4.62 d | 55.33±3.06 d |
100 MT | 78.54±4.88 a | 115.21±11.88 b | 132.31±4.56 bc | 86.30±4.63 b | 103.31±6.23 a | 150.86±9.72 de | 197.23±4.17 b | 109.26±5.98 bc | 38.53±5.24 a | 79.33±4.16 c | 95.87±7.64 c | 54.67±5.67 cd |
200 MT | 81.64±7.64 a | 130.01±7.78 a | 138.60±5.06 ab | 96.62±2.18 a | 106.87±8.79 a | 183.27±9.08 c | 210.17±7.74 b | 116.18±3.47 ab | 41.69±3.16 a | 80.67±7.02 c | 104.58±3.21 c | 57.38±3.06 c |
300 MT | 76.48±3.06 a | 126.73±2.01 ab | 133.15±5.93 bc | 96.83±1.17 a | 105.47±5.84 a | 156.47±5.71 d | 206.17±21.96 b | 110.78±4.31 bc | 43.63±5.14 a | 90.66±7.57 b | 129.34±8.08 b | 61.65±3.51 bc |
400 MT | 80.54±5.71 a | 136.47±10.71 a | 146.60±4.58 a | 102.58±8.22 a | 110.64±13.58 a | 239.07±26.25 a | 265.39±13.85 a | 119.82±5.77 a | 47.28±7.38 a | 107.64±3.51 a | 146.42±8.74 a | 69.43±4.16 a |
500 MT | 79.36±4.87 a | 126.04±5.05 ab | 140.92±6.20 ab | 97.91±2.26 a | 109.82±11.58 a | 210.62±7.74 b | 251.55±8.55 a | 116.71±4.10 ab | 43.85±5.54 a | 93.32±5.03 b | 135.46±5.86 ab | 66.32±4.04 ab |
处理 Treatment | H2O2含量H2O2 content/(μmol·g-1) | O2·-的产生速率Production rate of O2·-/(μmol·g-1·min-1) | ||||||
---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 2.63±0.12 a | 4.11±0.38 a | 6.93±0.18 a | 8.57±0.25 a | 0.83±0.06 a | 1.18±0.09 a | 1.87±0.08 a | 1.55±0.06 a |
100 MT | 2.58±0.11 a | 3.32±0.12 bc | 6.18±0.32 b | 7.61±0.14 b | 0.79±0.07 a | 1.15±0.08 a | 1.83±0.06 ab | 1.53±0.06 a |
200 MT | 2.66±0.14 a | 3.43±0.24 b | 6.09±0.19 b | 7.57±0.11 b | 0.81±0.07 a | 1.05±0.09 ab | 1.76±0.07 bc | 1.47±0.06 ab |
300 MT | 2.56±0.08 a | 3.18±0.13 bc | 6.14±0.25 b | 7.65±0.20 b | 0.79±0.10 a | 1.05±0.08 ab | 1.70±0.05 cd | 1.39±0.07 bc |
400 MT | 2.65±0.06 a | 3.01±0.16 c | 5.86±0.19 b | 7.25±0.17 c | 0.77±0.08 a | 0.92±0.04 b | 1.61±0.03 d | 1.31±0.06 c |
500 MT | 2.61±0.11 a | 3.52±0.20 b | 6.07±0.21 b | 7.41±0.12 bc | 0.81±0.06 a | 0.99±0.06 b | 1.67±0.04 cd | 1.35±0.06 bc |
表4 不同浓度褪黑素处理对草莓幼苗活性氧含量的影响
Table 4 Effects of different concentrations of melatonin on the reactive oxygen contents of strawberry seedlings
处理 Treatment | H2O2含量H2O2 content/(μmol·g-1) | O2·-的产生速率Production rate of O2·-/(μmol·g-1·min-1) | ||||||
---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 2.63±0.12 a | 4.11±0.38 a | 6.93±0.18 a | 8.57±0.25 a | 0.83±0.06 a | 1.18±0.09 a | 1.87±0.08 a | 1.55±0.06 a |
100 MT | 2.58±0.11 a | 3.32±0.12 bc | 6.18±0.32 b | 7.61±0.14 b | 0.79±0.07 a | 1.15±0.08 a | 1.83±0.06 ab | 1.53±0.06 a |
200 MT | 2.66±0.14 a | 3.43±0.24 b | 6.09±0.19 b | 7.57±0.11 b | 0.81±0.07 a | 1.05±0.09 ab | 1.76±0.07 bc | 1.47±0.06 ab |
300 MT | 2.56±0.08 a | 3.18±0.13 bc | 6.14±0.25 b | 7.65±0.20 b | 0.79±0.10 a | 1.05±0.08 ab | 1.70±0.05 cd | 1.39±0.07 bc |
400 MT | 2.65±0.06 a | 3.01±0.16 c | 5.86±0.19 b | 7.25±0.17 c | 0.77±0.08 a | 0.92±0.04 b | 1.61±0.03 d | 1.31±0.06 c |
500 MT | 2.61±0.11 a | 3.52±0.20 b | 6.07±0.21 b | 7.41±0.12 bc | 0.81±0.06 a | 0.99±0.06 b | 1.67±0.04 cd | 1.35±0.06 bc |
处理 Treatment | 相对电导率 Relative conductivity/% | 脯氨酸含量 Proline content/(μg·g-1) | 丙二醛含量 Malondialdehyde content/(nmol·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 12.31±1.47 a | 34.13±2.14 a | 47.40±1.78 a | 66.95±1.72 a | 30.84±2.73 a | 64.50±6.78 d | 74.65±5.71 c | 29.34±1.90 a | 5.28±0.64 a | 9.16±0.61 a | 11.77±0.76 a | 16.98±1.02 a |
100 MT | 11.54±1.88 a | 26.91±1.74 b | 42.64±3.32 ab | 62.49±1.91 b | 29.65±3.16 a | 65.89±5.50 d | 74.11±4.41 c | 27.44±2.63 a | 5.53±0.24 a | 8.21± 0.45 bc | 10.88±0.78 ab | 15.56±0.93 b |
200 MT | 11.64±1.64 a | 27.31±1.53 b | 37.23±4.90 bc | 58.29±2.20 c | 32.14±3.79 a | 72.20±3.36 cd | 75.94±4.28 c | 30.76±3.19 a | 5.69±0.46 a | 8.75± 0.53 ab | 10.68±0.57 ab | 15.94±0.29 ab |
300 MT | 12.48±2.06 a | 24.74±1.17 bc | 36.10±4.14 c | 51.83±1.96 d | 31.27±3.84 a | 79.14±2.95 bc | 88.76±7.03 b | 31.42±2.02 a | 5.63±0.34 a | 8.97± 0.66 ab | 11.10±0.46 ab | 15.90±0.73 ab |
400 MT | 11.54±1.71 a | 20.80±1.42 d | 32.23±1.03 c | 43.06±2.01 e | 34.64±3.58 a | 90.03±3.11 a | 108.88±6.37 a | 32.64±3.95 a | 6.28±0.58 a | 7.73±0.36 c | 9.99±0.72 b | 14.80±0.36 b |
500 MT | 12.36±1.87 a | 23.28±1.10 cd | 34.94±2.96 c | 56.19±2.15 c | 29.82±3.47 a | 84.91±4.04 ab | 99.51±5.74 a | 31.04±3.54 a | 5.85±0.54 a | 8.42± 0.25 abc | 10.44±0.58 b | 15.76±0.66 ab |
表5 不同浓度褪黑素处理对草莓幼苗相对电导率、MDA、PRO含量的影响
Table 5 Effects of different concentrations of melatonin treatments on the relative conductivity, MDA, and PRO contents of strawberry seedlings
处理 Treatment | 相对电导率 Relative conductivity/% | 脯氨酸含量 Proline content/(μg·g-1) | 丙二醛含量 Malondialdehyde content/(nmol·g-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | 0 d | 3 d | 6 d | 9 d | |
CK | 12.31±1.47 a | 34.13±2.14 a | 47.40±1.78 a | 66.95±1.72 a | 30.84±2.73 a | 64.50±6.78 d | 74.65±5.71 c | 29.34±1.90 a | 5.28±0.64 a | 9.16±0.61 a | 11.77±0.76 a | 16.98±1.02 a |
100 MT | 11.54±1.88 a | 26.91±1.74 b | 42.64±3.32 ab | 62.49±1.91 b | 29.65±3.16 a | 65.89±5.50 d | 74.11±4.41 c | 27.44±2.63 a | 5.53±0.24 a | 8.21± 0.45 bc | 10.88±0.78 ab | 15.56±0.93 b |
200 MT | 11.64±1.64 a | 27.31±1.53 b | 37.23±4.90 bc | 58.29±2.20 c | 32.14±3.79 a | 72.20±3.36 cd | 75.94±4.28 c | 30.76±3.19 a | 5.69±0.46 a | 8.75± 0.53 ab | 10.68±0.57 ab | 15.94±0.29 ab |
300 MT | 12.48±2.06 a | 24.74±1.17 bc | 36.10±4.14 c | 51.83±1.96 d | 31.27±3.84 a | 79.14±2.95 bc | 88.76±7.03 b | 31.42±2.02 a | 5.63±0.34 a | 8.97± 0.66 ab | 11.10±0.46 ab | 15.90±0.73 ab |
400 MT | 11.54±1.71 a | 20.80±1.42 d | 32.23±1.03 c | 43.06±2.01 e | 34.64±3.58 a | 90.03±3.11 a | 108.88±6.37 a | 32.64±3.95 a | 6.28±0.58 a | 7.73±0.36 c | 9.99±0.72 b | 14.80±0.36 b |
500 MT | 12.36±1.87 a | 23.28±1.10 cd | 34.94±2.96 c | 56.19±2.15 c | 29.82±3.47 a | 84.91±4.04 ab | 99.51±5.74 a | 31.04±3.54 a | 5.85±0.54 a | 8.42± 0.25 abc | 10.44±0.58 b | 15.76±0.66 ab |
1 | Van de Velde F, Grace MH, Pirovani MÉ, et al. Impact of a new postharvest disinfection method based on peracetic acid fogging on the phenolic profile of strawberries [J]. Postharvest Biol Technol, 2016, 117: 197-205. |
2 | 徐艺格, 王丽娟. 草莓品质育种研究进展 [J]. 北方园艺, 2020(18): 152-157. |
Xu YG, Wang LJ. Research progress on strawberry quality breeding [J]. North Hortic, 2020(18): 152-157. | |
3 | Giampieri F, Forbes-Hernandez TY, Gasparrini M, et al. Strawberry as a health promoter: an evidence based review [J]. Food Funct, 2015, 6(5): 1386-1398. |
4 | 赵密珍, 王静, 袁华招, 等. 草莓育种新动态及发展趋势 [J]. 植物遗传资源学报, 2019, 20(2): 249-257. |
Zhao MZ, Wang J, Yuan HZ, et al. Situation and perspectives of strawberry breeding [J]. J Plant Genet Resour, 2019, 20(2): 249-257. | |
5 | 才智, 岳静宇, 王钰雯, 等. 红花草莓育种及花瓣呈色机制研究进展 [J]. 果树学报, 2024, 41(1): 155-161. |
Cai Z, Yue JY, Wang YW, et al. Advances in research on breeding and petal coloration mechanism of red-flowered strawberry [J]. J Fruit Sci, 2024, 41(1): 155-161. | |
6 | 武冲, 姜莉莉, 宗晓娟, 等. 中国草莓育种研究进展 [J]. 落叶果树, 2022, 54(2):28-30. |
Wu C, Jiang LL, Zong XJ, et al. Advances in strawberry breeding in China [J]. Deciduous Fruit, 2022, 54(2):28-30. | |
7 | Ledesma NA, Kawabata S, Sugiyama N. Effect of high temperature on protein expression in strawberry plants [J]. Biol Plant, 2004, 48(1): 73-79. |
8 | Ledesma NA, Kawabata S. Responses of two strawberry cultivars to severe high temperature stress at different flower development stages [J]. Sci Hortic, 2016, 211: 319-327. |
9 | Zhao C, Liu B, Piao SL, et al. Temperature increase reduces global yields of major crops in four independent estimates [J]. Proc Natl Acad Sci USA, 2017, 114(35): 9326-9331. |
10 | Sharkey TD, Zhang R. High temperature effects on electron and proton circuits of photosynthesis [J]. J Integr Plant Biol, 2010, 52(8): 712-722. |
11 | Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death [J]. Mol Cell, 2010, 40(2): 253-266. |
12 | 周宏丹, 罗晓萍, 涂米雪, 等. 植物褪黑素: 植物应答非生物胁迫的新兴信号分子 [J]. 生物技术通报, 2024, 40(3): 41-51. |
Zhou HD, Luo XP, Tu MX, et al. Phytomelatonin: an emerging signal molecule responding to abiotic stress [J]. Biotechnol Bull, 2024, 40(3): 41-51. | |
13 | Arnao MB, Hernández-Ruiz J. Functions of melatonin in plants: a review [J]. J Pineal Res, 2015, 59(2): 133-150. |
14 | Jahan MS, Guo SR, Sun J, et al. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress [J]. Plant Physiol Biochem, 2021, 167: 309-320. |
15 | Annadurai MKK, Alagarsamy S, Karuppasami KM, et al. Melatonin decreases negative effects of combined drought and high temperature stresses through enhanced antioxidant defense system in tomato leaves [J]. Horticulturae, 2023, 9(6): 673. |
16 | Wu P, Ma YD, Ahammed GJ, et al. Insights into melatonin-induced photosynthetic electron transport under low-temperature stress in cucumber [J]. Front Plant Sci, 2022, 13: 1029854. |
17 | Liang D, Gao F, Ni ZY, et al. Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription [J]. Molecules, 2018, 23(3): 584. |
18 | Li X, Li MH, Deng WW, et al. Exogenous melatonin improves tea quality under moderate high temperatures by increasing epigallocatechin-3-gallate and theanine biosynthesis in Camellia sinensis L [J]. J Plant Physiol, 2020, 253: 153273. |
19 | Iqbal N, Sehar Z, Fatma M, et al. Melatonin reverses high-temperature-stress-inhibited photosynthesis in the presence of excess sulfur by modulating ethylene sensitivity in mustard [J]. Plants (Basel), 2023, 12(17): 3160. |
20 | Jia CH, Yu XJ, Zhang M, et al. Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers) [J]. J Plant Growth Regul, 2020, 39(2): 631-640. |
21 | Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin [J]. J Pineal Res, 2012, 52(3): 332-339. |
22 | Zhang J, Shi Y, Zhang XZ, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.) [J]. Environ Exp Bot, 2017, 138: 36-45. |
23 | 李雪, 赵士文, 包星星, 等. 提高绿光占比对黄瓜幼苗形态、光合性状及碳水化合物的影响 [J]. 中国农业大学学报, 2024, 29(2): 58-65. |
Li X, Zhao SW, Bao XX, et al. Effect of increasing the percentage of green light on morphology, photosynthetic traits and carbohydrates of cucumber seedlings [J]. J China Agric Univ, 2024, 29(2): 58-65. | |
24 | Dexter ST, Tottingham WE, Graber LF. Investigations of the hardiness of plants by measurement of electrical conductivity [J]. Plant Physiol, 1932, 7(1): 63-78. |
25 | Wang P, Yin LH, Liang D, et al. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle [J]. J Pineal Res, 2012, 53(1): 11-20. |
26 | 刘若溪, 曹歌, 王琪, 等. 外源褪黑素对高温胁迫下西瓜幼苗生理特性的影响 [J]. 天津农业科学, 2023, 29(6): 7-12, 20. |
Liu RX, Cao G, Wang Q, et al. Effects of exogenous melatonin on physiological characteristics of watermelon seedlings under elevated temperature stress [J]. Tianjin Agric Sci, 2023, 29(6): 7-12, 20. | |
27 | 陈倩云, 刘海河, 张彦萍, 等. 外源褪黑素对高温胁迫下厚皮甜瓜幼苗光合及抗氧化特性的影响 [J]. 河北农业大学学报, 2019, 42(1): 33-37. |
Chen QY, Liu HH, Zhang YP, et al. Effects of exogenous melatonin on photosynthesis and antioxidant activities of muskmelon seedlings under high temperature stress [J]. J Hebei Agric Univ, 2019, 42(1): 33-37. | |
28 | 齐晓媛, 王文莉, 胡少卿, 等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响 [J]. 应用生态学报, 2021, 32(7): 2496-2504. |
Qi XY, Wang WL, Hu SQ, et al. Effects of exogenous melatonin on photosynthesis and physiological characteristics of chry-santhemum seedlings under high temperature stress [J]. Chin J Appl Ecol, 2021, 32(7): 2496-2504. | |
29 | Liu SJ, Sun BX, Cao BL, et al. Effects of soil waterlogging and high-temperature stress on photosynthesis and photosystem II of ginger (Zingiber officinale) [J]. Protoplasma, 2023, 260(2): 405-418. |
30 | 田雪军, 徐佩琦, 吴晶晶, 等. 外源褪黑素对玫瑰高温胁迫的缓解效应 [J]. 山西农业大学学报: 自然科学版, 2024, 44(1): 34-42. |
Tian XJ, Xu PQ, Wu JJ, et al. Alleviating effects of exogenous melatonin on rose under high temperature stress [J]. J Shanxi Agric Univ Nat Sci Ed, 2024, 44(1): 34-42. | |
31 | 吴雪霞, 张圣美, 张爱冬, 等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响 [J]. 植物生理学报, 2019, 55(1): 49-60. |
Wu XX, Zhang SM, Zhang AD, et al. Effect of exogenous melatonin on photosynthetic and physiological characteristics of eggplant seedlings under high temperature stress [J]. Plant Physiol J, 2019, 55(1): 49-60. | |
32 | 张雪莲, 罗德旭, 杨红, 等. 外源褪黑素和硒对高温胁迫下辣椒生理特性和抗氧化系统的影响 [J]. 江苏农业学报, 2023, 39(8): 1729-1738. |
Zhang XL, Luo DX, Yang H, et al. Effects of exogenous melatonin and selenium on physiological properties and antioxidant systems of chilies under high temperature stress [J]. Jiangsu J Agric Sci, 2023, 39(8): 1729-1738. | |
33 | 王博伟, 陈艳丽, 朱国鹏, 等. 叶面喷施褪黑素对海南高温季节水培叶用莴苣生长生理的影响 [J]. 中国蔬菜, 2022(11): 80-85. |
Wang BW, Chen YL, Zhu GP, et al. Effect of melatonin foliar spraying on growth and physiology characteristics of hydroponic lettuce during high temperature season in Hainan [J]. China Veg, 2022(11): 80-85. | |
34 | 王译, 韩莹琰, 郝敬虹, 等. 褪黑素对高温胁迫下生菜抗氧化酶系统的影响 [J]. 北京农学院学报, 2022, 37(2): 45-49. |
Wang Y, Han YY, Hao JH, et al. Effects of melatonin on antioxidant enzyme of lettuce under high temperature stress [J]. J Beijing Univ Agric, 2022, 37(2): 45-49. | |
35 | 黄鸿晖, 顾里娟, 李美琳, 等. 褪黑素处理对草莓品质与活性氧代谢的影响 [J]. 食品科学, 2021, 42(15): 187-193. |
Huang HH, Gu LJ, Li ML, et al. Effect of postharvest melatonin treatment on quality and reactive oxygen species metabolism in strawberry [J]. Food Sci, 2021, 42(15): 187-193. | |
36 | Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. J Exp Bot, 2002, 53(372): 1331-1341. |
[1] | 赵长延, 柳延涛, 贾秀苹, 刘胜利, 雷中华, 王鹏, 朱志锋, 董红业, 吕增帅, 段维, 万素梅. 盐碱胁迫下褪黑素对作物生理机制影响的研究进展[J]. 生物技术通报, 2025, 41(2): 18-29. |
[2] | 李博静, 郑腊梅, 吴乌云, 高飞, 周宜君. 西蒙得木HSP20基因家族的进化、表达和功能分析[J]. 生物技术通报, 2024, 40(6): 190-202. |
[3] | 陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147. |
[4] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[5] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[6] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[7] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[8] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[9] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[10] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[11] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[12] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
[13] | 毕愿坤, 李丽, 朱传应, 王彦芹. 生境、温度及外源激素对花花柴花器官发育的影响[J]. 生物技术通报, 2021, 37(4): 28-34. |
[14] | 马旭辉, 陈茹梅, 柳小庆, 赵军, 张霞. 褪黑素对玉米幼苗根系发育和抗旱性的影响[J]. 生物技术通报, 2021, 37(2): 1-14. |
[15] | 范海霞, 赵飒, 辛国奇, 李静. 外源褪黑素对干旱胁迫下牡丹幼苗生理特性的影响[J]. 生物技术通报, 2020, 36(6): 63-72. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 553
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||