生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 171-180.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0926
• 研究报告 • 上一篇
韩江涛(), 张帅博, 秦雅蕊, 韩硕洋, 张雅康, 王吉庆, 杜清洁, 肖怀娟(
), 李猛(
)
收稿日期:
2024-09-24
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
李猛,男,博士,讲师,研究方向 :设施栽培与生理;E-mail: limengscience@163.com作者简介:
韩江涛,男,研究方向 :设施栽培与生理;E-mail: jett_888@163.com
基金资助:
HAN Jiang-tao(), ZHANG Shuai-bo, QIN Ya-rui, HAN Shuo-yang, ZHANG Ya-kang, WANG Ji-qing, DU Qing-jie, XIAO Huai-juan(
), LI Meng(
)
Received:
2024-09-24
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 β-淀粉酶(β-amylase, BAM)能水解淀粉,在植物生长和响应非生物胁迫中起重要作用。从全基因组水平对甜瓜BAM基因家族成员进行鉴定,为甜瓜BAM基因功能研究及抗性育种提供基因资源。 方法 分析BAM家族蛋白理化性质、系统进化、基因结构、保守基序、启动子顺式作用元件以及通过RT-qPCR对其在干旱、ABA、低温、盐胁迫下的表达模式进行分析。 结果 在甜瓜全基因组中鉴定出9个CmBAM基因家族成员,分别位于第1、4、5、6、7和11号染色体上,蛋白平均氨基酸个数为543,平均分子量为58.7 kD,等电点为5.47‒8.89。系统进化分析表明,甜瓜BAM基因家族成员与黄瓜的亲缘关系最近,同源性在94.5%以上,且存在一一对应的关系。甜瓜CmBAM成员启动子中主要顺式作用元件为激素响应元件、光响应元件、非生物胁迫元件和蛋白质结合元件。CmBAMs在干旱、ABA、低温和盐处理下的表达模式分析发现,CmBAMs不同程度地响应4种非生物胁迫,其中CmBAM1、CmBAM3和CmBAM9受干旱强烈诱导,CmBAM3、CmBAM5、CmBAM9受ABA强烈诱导,CmBAM1、CmBAM5、CmBAM9受低温胁迫强烈诱导;CmBAM3的表达受盐胁迫强烈诱导。 结论 从甜瓜全基因组中鉴定出9个CmBAMs,CmBAM1、CmBAM3、CmBAM5和CmBAM9对4种非生物胁迫最为敏感,表明其可能在非生物胁迫中发挥关键作用,可作为后续研究的候选基因。
韩江涛, 张帅博, 秦雅蕊, 韩硕洋, 张雅康, 王吉庆, 杜清洁, 肖怀娟, 李猛. 甜瓜β-淀粉酶基因家族的鉴定及对非生物胁迫的响应[J]. 生物技术通报, 2025, 41(3): 171-180.
HAN Jiang-tao, ZHANG Shuai-bo, QIN Ya-rui, HAN Shuo-yang, ZHANG Ya-kang, WANG Ji-qing, DU Qing-jie, XIAO Huai-juan, LI Meng. Identification of β-amylase Gene Family in Melon and Their Response to Abiotic Stresses[J]. Biotechnology Bulletin, 2025, 41(3): 171-180.
引物名称 Primer name | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | PCR产物 PCR product/bp |
---|---|---|---|
CmBAM1 | ATCAACAAGCAGCAGTCC | CCACCAAACATCAATCATTACC | 184 |
CmBAM2 | AAATGAACCCTGTGAGTAGC | CCCTCGACATCTTTACAACC | 144 |
CmBAM3 | AGGAGGAGGAGAAAGAAGG | CCACACATCCACCATAACC | 164 |
CmBAM4 | CCAGTGTATGTGATGATGCC | AGTCTCTCTCCACCAATCC | 151 |
CmBAM5 | TCTTGCAGCATTCCTTTACC | ACTTGGATTGGTGTTCTTCC | 155 |
CmBAM6 | GGTGCTGCTTTACAATTTCC | TAACCCATCCTTGTCAAACC | 168 |
CmBAM7 | GTGAAAGCCCTATCTCATCC | TCATTCTTTGCATCTCTCTCC | 148 |
CmBAM8 | GTGATCGGGTACTTTATCTGG | GCCATAATTGCAGCATAACC | 163 |
CmBAM9 | GTGAGCTTCGATATCCTTCC | AGGGCATTTCGTCATAGC | 171 |
CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC | 83 |
表1 本研究所用的引物序列信息
Table 1 Information of primers’ sequences for this study
引物名称 Primer name | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | PCR产物 PCR product/bp |
---|---|---|---|
CmBAM1 | ATCAACAAGCAGCAGTCC | CCACCAAACATCAATCATTACC | 184 |
CmBAM2 | AAATGAACCCTGTGAGTAGC | CCCTCGACATCTTTACAACC | 144 |
CmBAM3 | AGGAGGAGGAGAAAGAAGG | CCACACATCCACCATAACC | 164 |
CmBAM4 | CCAGTGTATGTGATGATGCC | AGTCTCTCTCCACCAATCC | 151 |
CmBAM5 | TCTTGCAGCATTCCTTTACC | ACTTGGATTGGTGTTCTTCC | 155 |
CmBAM6 | GGTGCTGCTTTACAATTTCC | TAACCCATCCTTGTCAAACC | 168 |
CmBAM7 | GTGAAAGCCCTATCTCATCC | TCATTCTTTGCATCTCTCTCC | 148 |
CmBAM8 | GTGATCGGGTACTTTATCTGG | GCCATAATTGCAGCATAACC | 163 |
CmBAM9 | GTGAGCTTCGATATCCTTCC | AGGGCATTTCGTCATAGC | 171 |
CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC | 83 |
名称 Name | 登录号 Accession ID | 染色体位置 Chromosomal location | 长度 Length/aa | 分子量 Molecular weight /kD | 理论等电点 pI | 稳定性 Instability index | 亲水性 GRAVY | 脂肪系数 Aliphatic index |
---|---|---|---|---|---|---|---|---|
CmBAM1 | MELO3C018794 | chr01:2 866 533-2 869 946(-) | 229 | 25.85 | 6.83 | 46.74 | -0.27 | 86.77 |
CmBAM2 | MELO3C022739 | chr04:20 844 211-20 850 106(+) | 546 | 61.51 | 8.70 | 42.96 | -0.33 | 70.20 |
CmBAM3 | MELO3C023067 | chr05:6 925 334-6 929 085(+) | 576 | 65.07 | 8.47 | 42.86 | -0.53 | 66.74 |
CmBAM4 | MELO3C006362 | chr06:2 807 369-2 810 480(-) | 577 | 64.02 | 5.83 | 35.07 | -0.40 | 68.35 |
CmBAM5 | MELO3C013887 | chr06:34 421 144-34 424 228(+) | 537 | 60.03 | 8.64 | 37.52 | -0.44 | 74.12 |
CmBAM6 | MELO3C014105 | chr06:36 954 661-36 958 280(+) | 524 | 59.95 | 8.89 | 42.93 | -0.30 | 77.04 |
CmBAM7 | MELO3C016213 | chr07:22 268 773-22 275 513(+) | 668 | 75.11 | 5.90 | 43.75 | -0.40 | 73.91 |
CmBAM8 | MELO3C021214 | chr11:31 280 641-31 285 843(-) | 698 | 78.20 | 5.74 | 37.39 | -0.43 | 73.60 |
CmBAM9 | MELO3C021362 | chr11:30 050 890-30 053 716(-) | 533 | 59.21 | 6.07 | 36.11 | -0.42 | 73.36 |
表2 甜瓜CmBAM基因家族成员的鉴定
Table 2 Identification of CmBAM gene family in melon (Cucumis melo)
名称 Name | 登录号 Accession ID | 染色体位置 Chromosomal location | 长度 Length/aa | 分子量 Molecular weight /kD | 理论等电点 pI | 稳定性 Instability index | 亲水性 GRAVY | 脂肪系数 Aliphatic index |
---|---|---|---|---|---|---|---|---|
CmBAM1 | MELO3C018794 | chr01:2 866 533-2 869 946(-) | 229 | 25.85 | 6.83 | 46.74 | -0.27 | 86.77 |
CmBAM2 | MELO3C022739 | chr04:20 844 211-20 850 106(+) | 546 | 61.51 | 8.70 | 42.96 | -0.33 | 70.20 |
CmBAM3 | MELO3C023067 | chr05:6 925 334-6 929 085(+) | 576 | 65.07 | 8.47 | 42.86 | -0.53 | 66.74 |
CmBAM4 | MELO3C006362 | chr06:2 807 369-2 810 480(-) | 577 | 64.02 | 5.83 | 35.07 | -0.40 | 68.35 |
CmBAM5 | MELO3C013887 | chr06:34 421 144-34 424 228(+) | 537 | 60.03 | 8.64 | 37.52 | -0.44 | 74.12 |
CmBAM6 | MELO3C014105 | chr06:36 954 661-36 958 280(+) | 524 | 59.95 | 8.89 | 42.93 | -0.30 | 77.04 |
CmBAM7 | MELO3C016213 | chr07:22 268 773-22 275 513(+) | 668 | 75.11 | 5.90 | 43.75 | -0.40 | 73.91 |
CmBAM8 | MELO3C021214 | chr11:31 280 641-31 285 843(-) | 698 | 78.20 | 5.74 | 37.39 | -0.43 | 73.60 |
CmBAM9 | MELO3C021362 | chr11:30 050 890-30 053 716(-) | 533 | 59.21 | 6.07 | 36.11 | -0.42 | 73.36 |
名称 Name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β-转角 β-sheet/% | 不规则卷曲 Random coil/% |
---|---|---|---|---|
CmBAM1 | 26.20 | 22.71 | 7.86 | 43.23 |
CmBAM2 | 32.60 | 14.10 | 7.14 | 46.15 |
CmBAM3 | 41.67 | 12.33 | 5.56 | 40.45 |
CmBAM4 | 38.13 | 11.79 | 5.55 | 44.54 |
CmBAM5 | 32.03 | 16.20 | 6.52 | 45.25 |
CmBAM6 | 35.50 | 13.93 | 6.68 | 43.89 |
CmBAM7 | 38.17 | 11.68 | 5.99 | 44.16 |
CmBAM8 | 34.38 | 13.18 | 6.73 | 45.70 |
CmBAM9 | 33.40 | 15.20 | 5.63 | 45.78 |
表3 甜瓜CmBAM家族蛋白的二级结构分析
Table 3 Secondary structure analysis of CmBAM family in melon
名称 Name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β-转角 β-sheet/% | 不规则卷曲 Random coil/% |
---|---|---|---|---|
CmBAM1 | 26.20 | 22.71 | 7.86 | 43.23 |
CmBAM2 | 32.60 | 14.10 | 7.14 | 46.15 |
CmBAM3 | 41.67 | 12.33 | 5.56 | 40.45 |
CmBAM4 | 38.13 | 11.79 | 5.55 | 44.54 |
CmBAM5 | 32.03 | 16.20 | 6.52 | 45.25 |
CmBAM6 | 35.50 | 13.93 | 6.68 | 43.89 |
CmBAM7 | 38.17 | 11.68 | 5.99 | 44.16 |
CmBAM8 | 34.38 | 13.18 | 6.73 | 45.70 |
CmBAM9 | 33.40 | 15.20 | 5.63 | 45.78 |
名称 Name | 激素响应 元件 Hormone response element | 光响应元件 Light response element | 非生物胁迫 响应元件 Abiotic stress response element | 蛋白结合 元件 Protein binding element |
---|---|---|---|---|
CmBAM1 | 10 | 4 | 5 | 0 |
CmBAM2 | 7 | 6 | 7 | 3 |
CmBAM3 | 7 | 6 | 6 | 5 |
CmBAM4 | 9 | 3 | 4 | 6 |
CmBAM5 | 6 | 5 | 8 | 1 |
CmBAM6 | 8 | 4 | 5 | 3 |
CmBAM7 | 8 | 4 | 4 | 1 |
CmBAM8 | 6 | 4 | 5 | 2 |
CmBAM9 | 9 | 5 | 7 | 4 |
表4 甜瓜BAM基因顺式作用元件分析
Table 4 Analysis of cis-acting elements in the promoter regions of BAM genes in melon
名称 Name | 激素响应 元件 Hormone response element | 光响应元件 Light response element | 非生物胁迫 响应元件 Abiotic stress response element | 蛋白结合 元件 Protein binding element |
---|---|---|---|---|
CmBAM1 | 10 | 4 | 5 | 0 |
CmBAM2 | 7 | 6 | 7 | 3 |
CmBAM3 | 7 | 6 | 6 | 5 |
CmBAM4 | 9 | 3 | 4 | 6 |
CmBAM5 | 6 | 5 | 8 | 1 |
CmBAM6 | 8 | 4 | 5 | 3 |
CmBAM7 | 8 | 4 | 4 | 1 |
CmBAM8 | 6 | 4 | 5 | 2 |
CmBAM9 | 9 | 5 | 7 | 4 |
图5 甜瓜BAM家族基因在干旱、ABA、低温和盐处理中的表达模式分析
Fig. 5 Analysis of expression patterns of BAM genes in melon seedlings under drought, ABA, low temperature, and salt stress
1 | Zhang DP, Wang YZ. Beta-amylase in developing apple fruits: activities, amounts and subcellular localization [J]. Sci China C Life Sci, 2002, 45(4): 429-440. |
2 | Stanley D, Farnden KJF, MacRae EA. Plant α-amylases: Functions and roles in carbohydrate metabolism [J]. Biol Sect Cell Mol Biol, 2005, 16(16): 65-71. |
3 | Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress [J]. New Phytol, 2017, 214(3): 943-951. |
4 | Monroe JD. Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth [J]. Plant Direct, 2020, 4(2): e00199. |
5 | Sethi S, Saini JS, Mohan A, et al. Comparative and evolutionary analysis of α-amylase gene across monocots and dicots [J]. Funct Integr Genomics, 2016, 16(5): 545-555. |
6 | Smith AM, Zeeman SC, Smith SM. Starch degradation [J]. Annu Rev Plant Biol, 2005, 56: 73-98. |
7 | Zeeman SC, Delatte T, Messerli G, et al. Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms [J]. Funct Plant Biol, 2007, 34(6): 465-473. |
8 | Zanella M, Borghi GL, Pirone C, et al. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress [J]. J Exp Bot, 2016, 67(6): 1819-1826. |
9 | Valerio C, Costa A, Marri L, et al. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress [J]. J Exp Bot, 2011, 62(2): 545-555. |
10 | Fulton DC, Stettler M, Mettler T, et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts [J]. Plant Cell, 2008, 20(4): 1040-1058. |
11 | Scheidig A, Fröhlich A, Schulze S, et al. Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves [J]. Plant J, 2002, 30(5): 581-591. |
12 | 董晨, 李伟才, 魏永赞, 等. 香蕉β-淀粉酶基因家族的系统进化分析[J]. 热带作物学报, 2016, 37(11): 2176-2182. |
Dong C, Li WC, Wei YZ, et al. Phylogenetic analysis of β-amylase gene family in banana[J]. Journal of Tropical Crops, 2016, 37(11): 2176-2182. | |
13 | Totsuka A, Nong VH, Kadokawa H, et al. Residues essential for catalytic activity of soybean beta-amylase [J]. Eur J Biochem, 1994, 221(2): 649-654. |
14 | Maeo K, Tomiya T, Hayashi K, et al. Sugar-responsible elements in the promoter of a gene for β-amylase of sweet potato [J]. Plant Mol Biol, 2001, 46(5): 627-637. |
15 | Wang SM, Lue WL, Eimert K, et al. Phytohormone-regulated β-amylase gene expression in rice [J]. Plant Mol Biol, 1996, 31(5): 975-982. |
16 | Kaplan F, Guy CL. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress [J]. Plant J, 2005, 44(5): 730-743. |
17 | Dreier W, Schnarrenberger C, Börner T. Light- and stress-dependent enhancement of amylolytic activities in white and green barley leaves: β-amylases are stress-induced proteins [J]. J Plant Physiol, 1995, 145(3): 342-348. |
18 | Monroe JD, Storm AR. Review: the Arabidopsis β-amylase (BAM) gene family: diversity of form and function [J]. Plant Sci, 2018, 276: 163-170. |
19 | Zhao LY, Gong X, Gao JZ, et al. Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses [J]. Gene, 2019, 689: 102-113. |
20 | Peng T, Zhu XF, Duan N, et al. PtrBAM1, a β-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels [J]. Plant Cell Environ, 2014, 37(12): 2754-2767. |
21 | 黄小芳, 毕楚韵, 黄伟群, 等.甘薯 β-淀粉酶家族基因的全基因组鉴定和表达分析[J]. 华南农业大学学报, 2021, 42(5): 50-59. |
Huang XF, Bi CY, Huang WQ, et al. Genome-wide identification and expression analysis of β-amylase family genes in sweet potato[J]. Journal of South China Agricultural University, 2021, 42(5): 50-59. | |
22 | Liu YM, Li ZY, Zhong C, et al. Alleviating effect of melatonin on melon seed germination under autotoxicity and saline-alkali combined stress [J]. J Plant Growth Regul, 2023, 42(4): 2474-2485. |
23 | 姜宏超. 不同品种薄皮甜瓜果实发育过程中淀粉和糖转化差异的研究[D]. 沈阳: 沈阳农业大学, 2021. |
Jiang HC. Study on the differences of starch and sugar conversion during fruit development of different oriental melon (Cucumis melo var. makuwa Makino) cultivars[D]. Shenyang: Shenyang Agricultural University. 2021. | |
24 | Zhang Q, Shan CH, Song W, et al. Transcriptome analysis of starch and sucrose metabolism change in Gold Queen Hami melons under different storage temperatures [J]. Postharvest Biol Technol, 2021, 174: 111445. |
25 | O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation [J]. Nucleic Acids Res, 2016, 44(D1): D733-D745. |
26 | Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching [J]. Nucleic Acids Res, 2009, 37(Web Server issue): W202-W208. |
27 | Chou KC, Shen HB. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: euk-mPLoc 2.0 [J]. PLoS One, 2010, 5(4): e9931. |
28 | Zhang HK, Gao SH, Lercher MJ, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees [J]. Nucleic Acids Res, 2012, 40(Web Server issue): W569-W572. |
29 | Bailey TL. Discovering novel sequence motifs with MEME [J]. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2.4. |
30 | Hu B, Jin JP, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server [J]. Bioinformatics, 2015, 31(8): 1296-1297. |
31 | Stitt M, Zeeman SC. Starch turnover: pathways, regulation and role in growth [J]. Curr Opin Plant Biol, 2012, 15(3): 282-292. |
32 | 江淑珍, 连辉, 熊远芳, 等. 锥栗β-淀粉酶基因家族的全基因组鉴定与分析 [J]. 森林与环境学报, 2021, 41(5): 545-553. |
Jiang SZ, Lian H, Xiong YF, et al. Genome-wide identification and expression analysis of the β-amylase gene family in Castanea henryi [J]. J For Environ, 2021, 41(5): 545-553. | |
33 | 姚馨怡, 赵佳莹, 胡素影, 等. 铁皮石斛SAPK基因家族鉴定及表达模式分析 [J]. 生物工程学报, 2024, 40(4): 1195-1210. |
Yao XY, Zhao JY, Hu SY, et al. Identification and expression profiling of SAPK gene family members in Dendrobium officinale [J]. Chin J Biotechnol, 2024, 40(4): 1195-1210. | |
34 | 梁国平. β-淀粉酶调控糖代谢参与葡萄的抗寒机理研究 [D]. 兰州: 甘肃农业大学, 2022. |
Liang GP. Study on the mechanism of β-amylase regulating glucose metabolism and participating in grape cold resistance [D]. Lanzhou: Gansu Agricultural University, 2022. | |
35 | Mason-Gamer RJ. The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae) [J]. Am J Bot, 2005, 92(6): 1045-1058. |
36 | 郝心愿, 岳川, 唐湖, 等. 茶树β-淀粉酶基因 CsBAM3 的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425. |
Hao XY, Yue C, Tang H, et al. Cloning and expression pattern of β-amylase gene CsBAM3 in tea plant in response to low temperature[J]. Acta Cropologica Sinica, 2017, 43(10): 1417-1425. | |
37 | Galani Yamdeu JH, Gupta PH, Shah AK, et al. Profiling of StvacINV1, BAM1 and INH2α expressions in relation to acid invertase and β-amylase activities during development of cold-induced sweetening in Indian potato (Solanum tuberosum L.) tubers [J]. Am J Potato Res, 2015, 92(5): 603-608. |
38 | Li M, Duan XY, Wang Q, et al. A new morphological method to identify cold tolerance of melon at seedling stage [J]. Funct Plant Biol, 2019, 47(1): 80-90. |
39 | Ghosh P, Roychoudhury A. Molecular basis of salicylic acid-phytohormone crosstalk in regulating stress tolerance in plants [J]. Braz J Bot, 2024, 47(3): 735-750. |
[1] | 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(3): 123-136. |
[2] | 覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160. |
[3] | 王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170. |
[4] | 颜伟, 陈慧婷, 叶青, 刘广超, 刘新, 侯丽霞. 葡萄HCT基因家族鉴定及其对低温胁迫的响应[J]. 生物技术通报, 2025, 41(2): 175-186. |
[5] | 匡健华, 程志鹏, 赵永晶, 杨洁, 陈润乔, 陈龙清, 胡慧贞. 激素和非生物胁迫下荷花GH3基因家族的表达分析[J]. 生物技术通报, 2025, 41(2): 221-233. |
[6] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
[7] | 杨涌, 袁国梅, 康肖肖, 刘亚明, 王东升, 张海娥. 板栗SWEET基因家族成员的鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 257-269. |
[8] | 杨涌, 曹蕊, 康肖肖, 刘静, 王旋, 张海娥. 板栗类黄酮合成通路13个基因家族的鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 270-283. |
[9] | 李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320. |
[10] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
[11] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
[12] | 杜品廷, 吴国江, 王振国, 李岩, 周伟, 周亚星. 高粱CPP基因家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 132-142. |
[13] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
[14] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[15] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||