生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 92-101.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0027
豆飞飞1(
), 任毓昭1, 王石磊1, 刘春颖1, 王晓东1, 王昭懿1, 刘彩霞1,2, 刘凤楼1,2, 王掌军1,2, 李清峰1,2(
)
收稿日期:2025-01-14
出版日期:2025-08-26
发布日期:2025-08-14
通讯作者:
李清峰,男,博士,副教授,研究方向 :作物遗传育种;E-mail: liqingfeng2017@nxu.edu.cn作者简介:豆飞飞,男,硕士研究生,研究方向 :作物遗传育种;E-mail: 17866162260@163.com
基金资助:
DOU Fei-fei1(
), REN Yu-zhao1, WANG Shi-lei1, LIU Chun-ying1, WANG Xiao-dong1, WANG Zhao-yi1, LIU Cai-xia1,2, LIU Feng-lou1,2, WANG Zhang-jun1,2, LI Qing-feng1,2(
)
Received:2025-01-14
Published:2025-08-26
Online:2025-08-14
摘要:
目的 为加快盐碱地小麦优质种质资源的创制,丰富遗传多样性,构建宁春4号EMS突变体库。 方法 采用0.5%甲基磺酸乙酯(EMS)溶液处理10 000粒小麦品种宁春4号种子,构建M1代突变体库,对其表型性状突变率进行统计分析。此外,对M1代材料进行250 mmol/L的NaCl溶液定向筛选,得到耐盐突变体,并对突变体进行表型鉴定,以及形态指标、物质积累、生理指标的测定。 结果 M1代成活3 709株,成株率37.09%,其中,有表型突变性状的1 226株,突变率为33.05%。1 226株突变类型丰富,包含叶部性状突变151株,穗部性状突变212株,分蘖突变161株,株高突变133株,育性和生育期突变130株,其他性状突变75株,突变率分别为13.89%、5.72%、4.34%、3.59%、3.50%和2.02%。经过盐胁迫处理后,宁春4号与突变体相比表现为,叶片黄化萎蔫,苗高、最大根长、初生根数、地上部鲜重、根鲜重、地上部干重、根冠比均表现显著差异,而根干重无显著变化;在生理指标方面,突变体的丙二醛(MDA)含量、细胞膜透性显著低于野生型,脯氨酸(Pro)含量、过氧化物酶(POD)和过氧化氢酶(CAT)活性显著高于野生型,可溶性糖(SS)含量无显著差异。 结论 以宁春4号为野生型材料诱变产生的突变体类型丰富,为快速定位小麦优异性状基因并研究其功能提供丰富的种质资源。
豆飞飞, 任毓昭, 王石磊, 刘春颖, 王晓东, 王昭懿, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 宁春4号小麦EMS突变体库的构建及表型变异分析[J]. 生物技术通报, 2025, 41(8): 92-101.
DOU Fei-fei, REN Yu-zhao, WANG Shi-lei, LIU Chun-ying, WANG Xiao-dong, WANG Zhao-yi, LIU Cai-xia, LIU Feng-lou, WANG Zhang-jun, LI Qing-feng. Construction and Phenotypic Variation Analysis of Ningchun No. 4 Wheat EMS Mutant Library[J]. Biotechnology Bulletin, 2025, 41(8): 92-101.
EMS浓度 EMS concentration (%) | 发芽率 Germination rate (%) | 相对致死率 Relative lethality rate (%) |
|---|---|---|
| 0 (CK) | 92.0a | 0 |
| 0.3 | 54.2b | 41.1 |
| 0.5 | 45.7c | 50.3 |
| 0.7 | 35.6d | 61.3 |
表1 不同浓度的EMS处理的种子发芽率
Table 1 Germination rates of seeds treated with different concentrations of EMS
EMS浓度 EMS concentration (%) | 发芽率 Germination rate (%) | 相对致死率 Relative lethality rate (%) |
|---|---|---|
| 0 (CK) | 92.0a | 0 |
| 0.3 | 54.2b | 41.1 |
| 0.5 | 45.7c | 50.3 |
| 0.7 | 35.6d | 61.3 |
性状 Trait | 表型 Phenotype | 突变数量 Number of mutations | 突变比率 Mutation ratio (%) |
|---|---|---|---|
叶部 Leaf | 间绿 Mesophyllous green | 36 | 0.97 |
| 单边失绿带 Single-sided loss of green tap | 98 | 2.64 | |
| 两侧失绿带 Loss of green belt on both sides | 22 | 0.59 | |
| 半边失绿 Lose one half of one’s head | 7 | 0.19 | |
| 中间失绿带 Lose the center green zone | 54 | 1.46 | |
| 叶变黄 Lose color | 206 | 5.55 | |
| 卷叶 Leafroll | 92 | 2.48 | |
穗 Spike | 双头穗 Double-headed spikelet | 42 | 1.13 |
| 三头穗 Three-headed spikelet | 16 | 0.43 | |
| 弯穗 Bent spikelet | 47 | 1.27 | |
| 密穗 Dense spikelet | 2 | 0.05 | |
| 不育穗 Sterile spikelet | 3 | 0.08 | |
| 畸形穗 Distorted spike | 30 | 0.81 | |
| 短穗 Short spikelet | 72 | 1.94 | |
分蘖 Tiller | 独秆 Solitary culm | 96 | 2.59 |
| 寡蘖 Few tiller | 49 | 1.32 | |
| 多蘖 Multiple tiller | 16 | 0.43 | |
株高 Plant height | 高秆 Tall stalks | 12 | 0.32 |
| 矮秆 Short stalks | 121 | 3.26 | |
育性和生育期 Fertility and maturity | 早熟 Early-maturingt | 27 | 0.73 |
| 晚熟 Late-maturing | 53 | 1.43 | |
| 不育 Sterile | 50 | 1.35 | |
其他 Others | 叶环腐斑 Leaf ring rot | 23 | 0.62 |
| 叶黄斑 Leaf yellow spot | 20 | 0.54 | |
| 叶白斑 Leaf white spot | 21 | 0.57 | |
| 叶白线 White lines on the leaf | 9 | 0.24 | |
| 叶黑线 Black lines on the leaf | 2 | 0.05 | |
| 合计 Total | 1 226 | 33.05 |
表2 M1的突变类型及比率
Table 2 Mutation types and ratios in M1
性状 Trait | 表型 Phenotype | 突变数量 Number of mutations | 突变比率 Mutation ratio (%) |
|---|---|---|---|
叶部 Leaf | 间绿 Mesophyllous green | 36 | 0.97 |
| 单边失绿带 Single-sided loss of green tap | 98 | 2.64 | |
| 两侧失绿带 Loss of green belt on both sides | 22 | 0.59 | |
| 半边失绿 Lose one half of one’s head | 7 | 0.19 | |
| 中间失绿带 Lose the center green zone | 54 | 1.46 | |
| 叶变黄 Lose color | 206 | 5.55 | |
| 卷叶 Leafroll | 92 | 2.48 | |
穗 Spike | 双头穗 Double-headed spikelet | 42 | 1.13 |
| 三头穗 Three-headed spikelet | 16 | 0.43 | |
| 弯穗 Bent spikelet | 47 | 1.27 | |
| 密穗 Dense spikelet | 2 | 0.05 | |
| 不育穗 Sterile spikelet | 3 | 0.08 | |
| 畸形穗 Distorted spike | 30 | 0.81 | |
| 短穗 Short spikelet | 72 | 1.94 | |
分蘖 Tiller | 独秆 Solitary culm | 96 | 2.59 |
| 寡蘖 Few tiller | 49 | 1.32 | |
| 多蘖 Multiple tiller | 16 | 0.43 | |
株高 Plant height | 高秆 Tall stalks | 12 | 0.32 |
| 矮秆 Short stalks | 121 | 3.26 | |
育性和生育期 Fertility and maturity | 早熟 Early-maturingt | 27 | 0.73 |
| 晚熟 Late-maturing | 53 | 1.43 | |
| 不育 Sterile | 50 | 1.35 | |
其他 Others | 叶环腐斑 Leaf ring rot | 23 | 0.62 |
| 叶黄斑 Leaf yellow spot | 20 | 0.54 | |
| 叶白斑 Leaf white spot | 21 | 0.57 | |
| 叶白线 White lines on the leaf | 9 | 0.24 | |
| 叶黑线 Black lines on the leaf | 2 | 0.05 | |
| 合计 Total | 1 226 | 33.05 |
图1 M1代叶部突变性状A:间绿;B:单边失绿带;C:两侧失绿带;D:半边失绿;E:中间失绿带;F:叶变黄;G:卷叶
Fig. 1 Leaf mutations in the M1 generationA: Mesophyllous green. B: Single-sided loss of green tap. C: Loss of green belt on both sides. D: Lose one half of one’s head.E: Lose the center green zone. F: Lose color. G: Leafroll
图2 M1代穗部突变性状A:双头穗;B:三头穗;C:弯穗;D:密穗;E:不育穗;F:畸形穗;G:短穗
Fig. 2 Panicle mutant traits in the M1 generationA: Double-headed spikelet. B: Three-headed spikelet. C: Bent spikelet. D: Dense spikelet. E: Sterile spikelet.F: Distorted spike. G: Short spikelet
图6 M1代病状突变性状A:叶环腐斑;B:叶黄斑;C:叶白斑;D:叶白线;E:叶黑线
Fig. 6 Diseased mutation traits of the M1 generationA: Leaf ring rot. B: Leaf yellow spot. C: Leaf white spot. D: White lines on the leaf. E: Black lines on the leaf
图7 盐胁迫下突变体植株的表型鉴定A:正常条件下;B:250 mmol/LNaCl;每个处理3次生物学重复
Fig. 7 Phenotypic characterization of mutant plants under salt stressA: Under normal conditions; B: 250 mmol/L NaCl. Three biological replicates per treatment
品种 Material | NaCl (mmol/L) | 苗高 Seedling height (cm) | 最大根长 Maximum root length (cm) | 初生根数 Number of initial roots |
|---|---|---|---|---|
宁春4号 Ningchun No. 4 | 0 | 14.12a | 8.92a | 5.47a |
| 250 | 15.16b | 9.96b | 5.62b | |
突变体 Mutant | 0 | 14.12a | 9.77c | 5.46a |
| 250 | 18.44c | 12.34d | 5.74c |
表3 盐碱胁迫对突变体形态指标的影响
Table 3 Effects of saline-alkali stress on mutant morphological indexes
品种 Material | NaCl (mmol/L) | 苗高 Seedling height (cm) | 最大根长 Maximum root length (cm) | 初生根数 Number of initial roots |
|---|---|---|---|---|
宁春4号 Ningchun No. 4 | 0 | 14.12a | 8.92a | 5.47a |
| 250 | 15.16b | 9.96b | 5.62b | |
突变体 Mutant | 0 | 14.12a | 9.77c | 5.46a |
| 250 | 18.44c | 12.34d | 5.74c |
品种 Material | NaCl (mmol/L) | 地上部鲜重 Shoot fresh weight (g/plant) | 根鲜重 Root fresh weight (g/plant) | 地上部干重 Shoot dry weight (g/plant) | 根干重 Root dry weight (g/plant) | 根冠比 Root-shoot ratio (%) |
|---|---|---|---|---|---|---|
宁春4号 Ningchun No. 4 | 0 | 0.181a | 0.049a | 0.024a | 0.008a | 27.07a |
| 250 | 0.186b | 0.061b | 0.029b | 0.009a | 32.80b | |
突变体 Mutant | 0 | 0.182a | 0.052c | 0.025a | 0.008a | 28.57c |
| 250 | 0.239c | 0.089d | 0.038c | 0.010a | 37.24d |
表4 盐碱胁迫对突变体苗期物质积累的影响
Table 4 Effects of saline-alkali stress on the accumulation of substances at the seedling stage of mutant
品种 Material | NaCl (mmol/L) | 地上部鲜重 Shoot fresh weight (g/plant) | 根鲜重 Root fresh weight (g/plant) | 地上部干重 Shoot dry weight (g/plant) | 根干重 Root dry weight (g/plant) | 根冠比 Root-shoot ratio (%) |
|---|---|---|---|---|---|---|
宁春4号 Ningchun No. 4 | 0 | 0.181a | 0.049a | 0.024a | 0.008a | 27.07a |
| 250 | 0.186b | 0.061b | 0.029b | 0.009a | 32.80b | |
突变体 Mutant | 0 | 0.182a | 0.052c | 0.025a | 0.008a | 28.57c |
| 250 | 0.239c | 0.089d | 0.038c | 0.010a | 37.24d |
| [1] | 刘志勇, 王道文, 张爱民, 等. 小麦育种行业创新现状与发展趋势 [J]. 植物遗传资源学报, 2018, 19(3): 430-434. |
| Liu ZY, Wang DW, Zhang AM, et al. Current status and perspective of wheat genomics, genetics and breeding [J]. J Plant Genet Resour, 2018, 19(3): 430-434. | |
| [2] | 邵千顺, 王斐, 王克雄, 等. 旱地冬小麦种质资源多样性评价 [J]. 江苏农业科学, 2018, 46(15): 45-48. |
| Shao QS, Wang F, Wang KX, et al. Evaluation of germplasm resource diversity of winter wheat in dry land [J]. Jiangsu Agric Sci, 2018, 46(15): 45-48. | |
| [3] | 任志强, 杨慧珍, 卜华虎, 等. 诱变在作物遗传育种中的应用进展 [J]. 中国农学通报, 2016, 32(33): 125-129. |
| Ren ZQ, Yang HZ, Bu HH, et al. Research progress of mutation in crop genetics breeding [J]. Chin Agric Sci Bull, 2016, 32(33): 125-129. | |
| [4] | Li WJ, Guo HJ, Wang YB, et al. Identification of novel alleles induced by EMS-mutagenesis in key genes of kernel hardness and starch biosynthesis in wheat by TILLING [J]. Genes Genom, 2017, 39(4): 387-395. |
| [5] | Greene EA, Codomo CA, Taylor NE, et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis [J]. Genetics, 2003, 164(2): 731-740. |
| [6] | Henry IM, Nagalakshmi U, Lieberman MC, et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing [J]. Plant Cell, 2014, 26(4): 1382-1397. |
| [7] | Mitter V, Zhang MC, Liu CJ, et al. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm [J]. Plant Pathol, 2006, 55(3): 433-441. |
| [8] | 徐艳花, 陈锋, 董中东, 等. EMS诱变的普通小麦豫农201突变体库的构建与初步分析 [J]. 麦类作物学报, 2010, 30(4): 625-629. |
| Xu YH, Chen F, Dong ZD, et al. Construction and analysis of EMS induced mutant library of hexaploid wheat cultivar Yunong 201 [J]. J Triticeae Crops, 2010, 30(4): 625-629. | |
| [9] | 张婷, 温宏伟, 袁凯, 等. 晋麦47 EMS突变体库的构建及高代突变材料品质性状的初步分析 [J]. 核农学报, 2021, 35(8): 1731-1739. |
| Zhang T, Wen HW, Yuan K, et al. Construction of ethyl methane sulfonate mutant library of Jinmai 47 and preliminary analysis of quality characteristics of high generation mutants [J]. J Nucl Agric Sci, 2021, 35(8): 1731-1739. | |
| [10] | 杨子博, 张勇, 刘畅, 等. 利用EMS诱变创制淮麦33抗赤霉病突变体 [J]. 南方农业学报, 2023, 54(4): 1010-1017. |
| Yang ZB, Zhang Y, Liu C, et al. Creation of Huaimai 33 Fusarium head blight resistant mutants by EMS mutation [J]. J South Agric, 2023, 54(4): 1010-1017. | |
| [11] | Yasui T. Waxy and low-amylose mutants of bread wheat (Triticum aestivum L.) and their starch, flour and grain properties [J]. Jpn Agric Res Q JARQ, 2006, 40(4): 327-331. |
| [12] | 张维宏, 安哲, 范学锋, 等. EMS诱导小麦TcLr19感叶锈病突变体的筛选 [J]. 华北农学报, 2016, 31(4): 88-93. |
| Zhang WH, An Z, Fan XF, et al. Screening of mutants susceptible to puccina triticina in TcLr19 induced by EMS [J]. Acta Agric Boreali Sin, 2016, 31(4): 88-93. | |
| [13] | Lombardo LA, Nisi MM, Salines N, et al. Identification of novel high molecular weight glutenin subunit mutants in bread wheat (Triticum aestivum L.) [J]. Cytol Genet, 2017, 51(4): 305-314. |
| [14] | Kuraparthy V, Sood S, Dhaliwal HS, et al. Identification and mapping of a tiller inhibition gene (tin3) in wheat [J]. Theor Appl Genet, 2007, 114(2): 285-294. |
| [15] | Xu T, Bian NF, Wen MX, et al. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant [J]. Theor Appl Genet, 2017, 130(3): 483-494. |
| [16] | 王娜, 黄丹, 张莹, 等. 盐碱地综合治理利用关键技术专利现状 [J]. 中国科技信息, 2024(9): 31-34. |
| Wang N, Huang D, Zhang Y, et al. Patent status of key technologies for comprehensive management and utilization of saline-alkali land [J]. China Sci Technol Inf, 2024(9): 31-34. | |
| [17] | 张春娥, 孙悦, 刘新保, 等. 宁春4号小麦品质及相关性分析 [J]. 中国粮油学报, 2024, 39(5): 54-61. |
| Zhang CE, Sun Y, Liu XB, et al. Quality and correlation analysis of ningchun No.4 wheat [J]. J Chin Cereals Oils Assoc, 2024, 39(5): 54-61. | |
| [18] | Greco R, Ouwerkerk PB, Taal AJ, et al. Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis [J]. Plant Mol Biol, 2001, 46(2): 215-227. |
| [19] | Hohmann U, Jacobs G, Jung C. An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants [J]. Plant Breed, 2005, 124(4): 317-321. |
| [20] | 曹亚萍, 武银玉, 范绍强, 等. EMS诱变技术在小麦上的应用 [J]. 激光生物学报, 2019, 28(5): 394. |
| Cao YP, Wu YY, Fan SQ, et al. Application of induction technology with EMS on wheat [J]. Acta Laser Biol Sin, 2019, 28(5): 394. | |
| [21] | 袁凯, 张伟, 温宏伟, 等. EMS诱导济麦22突变体库的构建及表型变异分析 [J]. 植物遗传资源学报, 2021, 22(4): 979-988. |
| Yuan K, Zhang W, Wen HW, et al. EMS-induced mutagenesis and phenotypic variation analysis in wheat variety Jimai 22 [J]. J Plant Genet Resour, 2021, 22(4): 979-988. | |
| [22] | 吕亮杰, 陈希勇, 张文英, 等. EMS诱变抗旱小麦冀麦418的突变体筛选与鉴定 [J]. 华北农学报, 2020, 35(S1): 47-55. |
| Lü LJ, Chen XY, Zhang WY, et al. Selection and identification of the EMS-induced drought-resistant wheat mutants from Jimai 418 [J]. Acta Agric Boreali Sin, 2020, 35(S1): 47-55. | |
| [23] | 孙玉龙, 朱欣欣, 何瑞士, 等. EMS诱导的盛农1号小麦突变体筛选与鉴定 [J]. 麦类作物学报, 2018, 38(7): 782-790. |
| Sun YL, Zhu XX, He RS, et al. Selection and identification of the EMS-induced wheat mutants from Shengnong 1 [J]. J Triticeae Crops, 2018, 38(7): 782-790. | |
| [24] | 许耀奎, 邬信康, 张富琴, 等. 化学诱变剂EMS对春小麦诱变效应的研究 [J]. 作物学报, 1985, 11(3): 215-216, 198. |
| Xu YK, Wu XK, Zhang FQ, et al. Studies on induced effect of chemical mutagen (Ems) in different treatments of spring wheat [J]. Acta Agron Sin, 1985, 11(3): 215-216, 198. | |
| [25] | Lethin J, Shakil SSM, Hassan S, et al. Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines [J]. BMC Plant Biol, 2020, 20(1): 18. |
| [26] | Zahra S, Hussain M, Zulfiqar S, et al. EMS-based mutants are useful for enhancing drought tolerance in spring wheat [J]. Cereal Res Commun, 2022, 50(4): 767-778. |
| [27] | le Roux ML, Burger NFV, Vlok M, et al. EMS derived wheat mutant BIG8-1 (Triticum aestivum L.)-a new drought tolerant mutant wheat line [J]. Int J Mol Sci, 2021, 22(10): 5314. |
| [28] | Wang DZ, Li YP, Wang HJ, et al. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204 [J]. Plant Commun, 2023, 4(4): 100593. |
| [29] | Chhabra B, Singh L, Wallace S, et al. Screening of an ethyl methane sulfonate mutagenized population of a wheat cultivar susceptible to Fusarium head blight identifies resistant variants [J]. Plant Dis, 2021, 105(11): 3669-3676. |
| [30] | Xu XR, Su YQ, Yang JT, et al. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant [J]. Theor Appl Genet, 2024, 137(2): 49. |
| [31] | Ingvardsen CR, Massange-Sánchez JA, Borum F, et al. Highly effective mlo-based powdery mildew resistance in hexaploid wheat without pleiotropic effects [J]. Plant Sci, 2023, 335: 111785. |
| [1] | 张越, 毕钰, 慕雪男, 郑子薇, 王志刚, 徐伟慧. 小麦赤霉病拮抗菌JB7的生防特性[J]. 生物技术通报, 2025, 41(7): 261-271. |
| [2] | 李成花, 豆飞飞, 任毓昭, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 外施水杨酸对白粉菌侵染小麦的影响及白粉菌转录组分析[J]. 生物技术通报, 2025, 41(7): 272-280. |
| [3] | 王伟伟, 赵振杰, 王志, 邹景伟, 罗政辉, 张玉杰, 钮力亚, 于亮, 杨学举. 盐胁迫下与小麦生理响应相关的耐盐基因研究进展[J]. 生物技术通报, 2025, 41(5): 14-22. |
| [4] | 王轶民, 李莹, 董海涛, 张恒瑞, 常璐, 高田甜, 韩德俊, 吴建辉. SRO家族蛋白在小麦多倍化进程中的演化规律[J]. 生物技术通报, 2025, 41(5): 70-81. |
| [5] | 马耀武, 张麒宇, 杨淼, 蒋诚, 张振宇, 张伊琳, 李梦莎, 许嘉阳, 张斌, 崔光周, 姜瑛. 烟草根际促生菌的筛选鉴定及促生性能研究[J]. 生物技术通报, 2025, 41(3): 271-281. |
| [6] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [7] | 张晓英, 毛咪, 王洪凤, 丁新华, 朱树伟, 石磊. 免疫诱抗剂ZNC对小麦赤霉病防治和产量的影响[J]. 生物技术通报, 2024, 40(8): 95-105. |
| [8] | 张娜, 刘梦楠, 屈展帆, 崔祎平, 倪嘉瑶, 王华忠. 小麦烯醇化酶基因ENO2的可变翻译分析和原核表达[J]. 生物技术通报, 2024, 40(5): 112-119. |
| [9] | 牛德, 何跃辉. 季节性因素调控小麦开花时间的分子与表观遗传机制[J]. 生物技术通报, 2024, 40(10): 30-40. |
| [10] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
| [11] | 焦进兰, 王文文, 介欣芮, 王华忠, 岳洁瑜. 外源钙缓解小麦幼苗盐胁迫的作用机制[J]. 生物技术通报, 2024, 40(1): 207-221. |
| [12] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
| [13] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
| [14] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
| [15] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||