生物技术通报 ›› 2025, Vol. 41 ›› Issue (12): 16-26.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0467
收稿日期:2025-05-07
出版日期:2025-12-26
发布日期:2026-01-06
通讯作者:
李瑞丽,女,博士,教授,研究方向 :植物分子细胞生物学;E-mail: liruili@bjfu.edu.cn作者简介:段若昕,女,硕士研究生,研究方向 :植物分子细胞生物学;E-mail: ruoxinduan1228@bjfu.edu.cn
基金资助:
DUAN Ruo-xin(
), CHEN Ying-ying, LIN Jin-xing, LI Rui-li(
)
Received:2025-05-07
Published:2025-12-26
Online:2026-01-06
摘要:
种子休眠是指种子在适宜环境条件下暂时无法萌发的现象,这一特性可以防止作物的收获前萌发。在林业中,研究种子休眠有利于森林培育,因此具有重要应用价值。研究表明植物激素脱落酸(abscisic acid, ABA)诱导和维持种子休眠,赤霉素(gibberellin, GA)解除休眠,二者以拮抗作用的形式调控种子的休眠和萌发。尽管已经有一些在激素调控种子休眠和萌发方面的研究,但是缺少对种子休眠分子机制的系统总结。因此,本文综述了种子休眠的类型、光温信号对种子休眠的影响,重点阐述了ABA、GA及激素间相互作用对种子休眠的调控机制,并对休眠特异性调控因子(如DOG1、DOG18、Sdr4)及表观遗传调控机制进行了归纳总结,以期加深对种子休眠复杂调控网络的理解,为植物性状的改良和分子设计育种提供理论参考。
段若昕, 陈盈盈, 林金星, 李瑞丽. 种子休眠及其调控机制研究进展[J]. 生物技术通报, 2025, 41(12): 16-26.
DUAN Ruo-xin, CHEN Ying-ying, LIN Jin-xing, LI Rui-li. Advance on Seed Dormancy and Its Regulation Mechanism[J]. Biotechnology Bulletin, 2025, 41(12): 16-26.
基因 Gene | 突变体休眠水平 Dormancy level in mutants | 基本功能 Function | 调控因子 Regulation factor | 参考文献 Reference |
|---|---|---|---|---|
| DOG1 | 降低 | 种子休眠正调控因子 | bZIP67反式激活DOG1 | [ |
| ERF50直接抑制DOG1 | [ | |||
| ABI3 | 降低 | 促进种子发育, 抑制种子萌发 | WRKY41 促进ABI3转录 | [ |
| RAV1直接下调ABI3的表达 | [ | |||
| ABI4 | 降低 | 正调控ABA信号途径,抑制种子萌发 | PIF4和ABI4形成转录激活复合体,促进休眠 | [ |
| MYB96下调ABI4的表达 | [ | |||
| ABI5 | 变化不显著 | 正调控ABA信号途径,抑制种子萌发 | RAV1直接下调ABI5的表达 | [ |
| BIN2磷酸化并稳定ABI5以增强ABA信号传导 | [ | |||
| NCED6/9 | 变化不显著 | ABA合成途径关键代谢酶 | MYB96激活NCED6的表达 | [ |
| FUS3增强NCED6和NCED9的表达 | [ | |||
| CYP707A1/2 | 增加 | ABA分解途径关键代谢酶 | ABI4抑制CYP707A1/2的表达 | [ |
| GA2oxs | 降低 | GA失活基因,GA含量在突变体中上调 | DDF1直接促进GA2ox7的表达,从而降低GA含量 | [ |
| WRKY6 | 变化不显著 | 直接结合关键靶基因RAV1的启动子抑制其表达,进而调控ABA | — | [ |
| HONSU | 增强 | HONSU通过抑制ABA信号传导调节拟南芥种子休眠。 | — | [ |
| AHG1/3 | 增加 | 萌发过程中ABA响应的负调控因子 | DOG1抑制AHG1的磷酸酶活性 | [ |
表1 种子休眠过程中的关键基因
Table 1 Key genes involved in the seed dormancy
基因 Gene | 突变体休眠水平 Dormancy level in mutants | 基本功能 Function | 调控因子 Regulation factor | 参考文献 Reference |
|---|---|---|---|---|
| DOG1 | 降低 | 种子休眠正调控因子 | bZIP67反式激活DOG1 | [ |
| ERF50直接抑制DOG1 | [ | |||
| ABI3 | 降低 | 促进种子发育, 抑制种子萌发 | WRKY41 促进ABI3转录 | [ |
| RAV1直接下调ABI3的表达 | [ | |||
| ABI4 | 降低 | 正调控ABA信号途径,抑制种子萌发 | PIF4和ABI4形成转录激活复合体,促进休眠 | [ |
| MYB96下调ABI4的表达 | [ | |||
| ABI5 | 变化不显著 | 正调控ABA信号途径,抑制种子萌发 | RAV1直接下调ABI5的表达 | [ |
| BIN2磷酸化并稳定ABI5以增强ABA信号传导 | [ | |||
| NCED6/9 | 变化不显著 | ABA合成途径关键代谢酶 | MYB96激活NCED6的表达 | [ |
| FUS3增强NCED6和NCED9的表达 | [ | |||
| CYP707A1/2 | 增加 | ABA分解途径关键代谢酶 | ABI4抑制CYP707A1/2的表达 | [ |
| GA2oxs | 降低 | GA失活基因,GA含量在突变体中上调 | DDF1直接促进GA2ox7的表达,从而降低GA含量 | [ |
| WRKY6 | 变化不显著 | 直接结合关键靶基因RAV1的启动子抑制其表达,进而调控ABA | — | [ |
| HONSU | 增强 | HONSU通过抑制ABA信号传导调节拟南芥种子休眠。 | — | [ |
| AHG1/3 | 增加 | 萌发过程中ABA响应的负调控因子 | DOG1抑制AHG1的磷酸酶活性 | [ |
| [1] | Soppe WJJ, Bentsink L. Seed dormancy back on track; its definition and regulation by DOG1 [J]. New Phytol, 2020, 228(3): 816-819. |
| [2] | Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy [J]. Annu Rev Plant Biol, 2008, 59: 387-415. |
| [3] | 王艳梅, 张小雪, 朱秀征, 等. 林木种子休眠与萌发机制研究进展 [J]. 林业科学, 2021, 57(10): 128-144. |
| Wang YM, Zhang XX, Zhu XZ, et al. Research progress on dormancy and germination mechanism of forest seeds [J]. Sci Silvae Sin, 2021, 57(10): 128-144. | |
| [4] | Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice [J]. Plant J, 2018, 95(3): 545-556. |
| [5] | Chen WQ, Wang W, Lyu YS, et al. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway [J]. Crop J, 2021, 9(1): 68-78. |
| [6] | Buijs G. A perspective on secondary seed dormancy in Arabidopsis thaliana [J]. Plants, 2020, 9(6): 749. |
| [7] | Finch-Savage WE, Footitt S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments [J]. J Exp Bot, 2017, 68(4): 843-856. |
| [8] | Baskin JM, Baskin CC. A classification system for seed dormancy [J]. Seed Sci Res, 2004, 14(1): 1-16. |
| [9] | Baskin JM, Baskin CC. Some considerations for adoption of Nikolaeva’s formula system into seed dormancy classification [J]. Seed Sci Res, 2008, 18(3): 131-137. |
| [10] | Farooq MA, Ma W, Shen SX, et al. Underlying biochemical and molecular mechanisms for seed germination [J]. Int J Mol Sci, 2022, 23(15): 8502. |
| [11] | Batlla D, Benech-Arnold RL. Predicting changes in dormancy level in natural seed soil banks [J]. Plant Mol Biol, 2010, 73(1/2): 3-13. |
| [12] | Schmuths H, Bachmann K, Weber WE, et al. Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana [J]. Ann Bot, 2006, 97(4): 623-634. |
| [13] | Yamauchi Y, Ogawa M, Kuwahara A, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds [J]. Plant Cell, 2004, 16(2): 367-378. |
| [14] | Achard P, Gong F, Cheminant S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism [J]. Plant Cell, 2008, 20(8): 2117-2129. |
| [15] | Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci USA, 1997, 94(3): 1035-1040. |
| [16] | Kendall SL, Hellwege A, Marriot P, et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors [J]. Plant Cell, 2011, 23(7): 2568-2580. |
| [17] | Hyvärinen L, Fuchs C, Utz-Pugin A, et al. Temperature-dependent polar lignification of a seed coat suberin layer promoting dormancy in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2025, 122(6): e2413627122. |
| [18] | Martel C, Blair LK, Donohue K. PHYD prevents secondary dormancy establishment of seeds exposed to high temperature and is associated with lower PIL5 accumulation [J]. J Exp Bot, 2018, 69(12): 3157-3169. |
| [19] | de Wit M, Galvão VC, Fankhauser C. Light-mediated hormonal regulation of plant growth and development [J]. Annu Rev Plant Biol, 2016, 67: 513-537. |
| [20] | Yang LW, Liu SR, Lin RC. The role of light in regulating seed dormancy and germination [J]. J Integr Plant Biol, 2020, 62(9): 1310-1326. |
| [21] | Barrero JM, Downie AB, Xu Q, et al. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination [J]. Plant Cell, 2014, 26(3): 1094-1104. |
| [22] | Fantini E, Facella P. Cryptochromes in the field: how blue light influences crop development [J]. Physiol Plant, 2020, 169(3): 336-346. |
| [23] | de Oliveira R, Alves FRR, da Rocha Prado E, et al. CRYPTOCHROME 1a-mediated blue light perception regulates tomato seed germination via changes in hormonal balance and endosperm-degrading hydrolase dynamics [J]. Planta, 2023, 257(4): 67. |
| [24] | Jiang Z, Xu G, Jing Y, et al. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis [J]. Nat Commun, 2016, 7(1): 12377. |
| [25] | Heschel MS, Butler CM, Barua D, et al. New roles of phytochromes during seed germination [J]. Int J Plant Sci, 2008, 169(4): 531-540. |
| [26] | Lefebvre V, North H, Frey A, et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy [J]. Plant J, 2006, 45(3): 309-319. |
| [27] | Hao CH, Pang C, Yang LN, et al. Myosin-binding protein 13 mediates primary seed dormancy via abscisic acid biosynthesis and signaling in Arabidopsis [J]. Plant J, 2024, 120(5): 2193-2206. |
| [28] | Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis [J]. Plant Physiol, 2006, 141(1): 97-107. |
| [29] | Zhao FK, Ma Q, Li YJ, et al. OsNAC2 regulates seed dormancy and germination in rice by inhibiting ABA catabolism [J]. Biochem Biophys Res Commun, 2023, 682: 335-342. |
| [30] | Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition [J]. Front Plant Sci, 2023, 14: 1192652. |
| [31] | Yang C, Li XB, Chen SQ, et al. ABI5-FLZ13 module transcriptionally represses growth-related genes to delay seed germination in response to ABA [J]. Plant Commun, 2023, 4(6): 100636. |
| [32] | Nie KL, Zhao HY, Wang XP, et al. The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination [J]. J Integr Plant Biol, 2022, 64(4): 930-941. |
| [33] | Varshney V, Majee M. JA shakes hands with ABA to delay seed germination [J]. Trends Plant Sci, 2021, 26(8): 764-766. |
| [34] | Yu JL, Yang L, Liu XB, et al. Overexpression of poplar pyrabactin resistance-like abscisic acid receptors promotes abscisic acid sensitivity and drought resistance in transgenic Arabidopsis [J]. PLoS One, 2016, 11(12): e0168040. |
| [35] | Nishimura N, Tsuchiya W, Moresco JJ, et al. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme [J]. Nat Commun, 2018, 9(1): 2132. |
| [36] | Kim W, Lee Y, Park J, et al. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis [J]. Plant Cell Physiol, 2013, 54(4): 555-572. |
| [37] | Mao XX, Zheng XY, Sun BR, et al. MKK3 cascade regulates seed dormancy through a negative feedback loop modulating ABA signal in rice [J]. Rice, 2024, 17(1): 2. |
| [38] | Yamaguchi S, Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals [J]. Plant Cell Physiol, 2000, 41(3): 251-257. |
| [39] | Zhang W, Qu LW, Zhao J, et al. Practical methods for breaking seed dormancy in a wild ornamental tulip species Tulipa thianschanica regel [J]. Agronomy, 2020, 10(11): 1765. |
| [40] | Ye H, Feng JH, Zhang LH, et al. Map-based cloning of seed Dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice [J]. Plant Physiol, 2015, 169(3): 2152-2165. |
| [41] | Xing MQ, Chen SH, Zhang XF, et al. Rice OsGA2ox9 regulates seed GA metabolism and dormancy [J]. Plant Biotechnol J, 2023, 21(12): 2411-2413. |
| [42] | Claeys H, De Bodt S, Inzé D. Gibberellins and DELLAs: central nodes in growth regulatory networks [J]. Trends Plant Sci, 2014, 19(4): 231-239. |
| [43] | Penfield S, Gilday AD, Halliday KJ, et al. DELLA-mediated Cotyledon expansion breaks coat-imposed seed dormancy [J]. Curr Biol, 2006, 16(23): 2366-2370. |
| [44] | Ariizumi T, Hauvermale AL, Nelson SK, et al. Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling [J]. Plant Physiol, 2013, 162(4): 2125-2139. |
| [45] | Kim S, Huh SM, Han HJ, et al. A rice seed-specific Glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy [J]. Plant Mol Biol, 2023, 111(6): 523-539. |
| [46] | Ali F, Qanmber G, Li FG, et al. Updated role of ABA in seed maturation, dormancy, and germination [J]. J Adv Res, 2022, 35: 199-214. |
| [47] | Xian BS, Rehmani MS, Fan YN, et al. The ABI4-RGL2 module serves as a double agent to mediate the antagonistic crosstalk between ABA and GA signals [J]. New Phytol, 2024, 241(6): 2464-2479. |
| [48] | Shu K, Liu XD, Xie Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination [J]. Mol Plant, 2016, 9(1): 34-45. |
| [49] | Shu K, Zhang HW, Wang SF, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis [J]. PLoS Genet, 2013, 9(6): e1003577. |
| [50] | Cantoro R, Crocco CD, Benech-Arnold RL, et al. In vitro binding of sorghum bicolor transcription factors ABI4 and ABI5 to a conserved region of a GA 2-OXIDASE promoter: possible role of this interaction in the expression of seed dormancy [J]. J Exp Bot, 2013, 64(18): 5721-5735. |
| [51] | Wang X, Gomes MM, Bailly C, et al. Role of ethylene and proteolytic N-degron pathway in the regulation of Arabidopsis seed dormancy [J]. J Integr Plant Biol, 2021, 63(12): 2110-2122. |
| [52] | Wilson RL, Kim H, Bakshi A, et al. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress [J]. Plant Physiol, 2014, 165(3): 1353-1366. |
| [53] | Carrera-Castaño G, Mira S, Fañanás-Pueyo I, et al. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1 [J]. New Phytol, 2024, 242(5): 2026-2042. |
| [54] | Dave A, Vaistij FE, Gilday AD, et al. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid [J]. J Exp Bot, 2016, 67(8): 2277-2284. |
| [55] | Liu XD, Zhang H, Zhao Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis [J]. Proc Natl Acad Sci USA, 2013, 110(38): 15485-15490. |
| [56] | Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages [J]. Plant J, 2007, 52(1): 133-146. |
| [57] | Duan SY, Guan SX, Fei RW, et al. Unraveling the role of PlARF2 in regulating deed formancy in Paeonia lactiflora [J]. Planta, 2024, 259(6): 133. |
| [58] | Pan JJ, Wang HP, You QG, et al. Jasmonate-regulated seed germination and crosstalk with other phytohormones [J]. J Exp Bot, 2023, 74(4): 1162-1175. |
| [59] | Pan JJ, Hu YR, Wang HP, et al. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis [J]. Plant Cell, 2020, 32(12): 3846-3865. |
| [60] | Hu YR, Yu DQ. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis [J]. Plant Cell, 2014, 26(11): 4394-4408. |
| [61] | Hao YH, Zeng ZX, Zhang XL, et al. Green means go: Green light promotes hypocotyl elongation via brassinosteroid signaling [J]. Plant Cell, 2023, 35(5): 1304-1317. |
| [62] | Zhao X, Dou LR, Gong ZZ, et al. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis [J]. New Phytol, 2019, 221(2): 908-918. |
| [63] | Carrillo-Barral N, Rodríguez-Gacio MDC, Matilla AJ. Delay of germination-1 (DOG1): a key to understanding seed dormancy [J]. Plants, 2020, 9(4): 480. |
| [64] | Chiang GCK, Bartsch M, Barua D, et al. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana [J]. Mol Ecol, 2011, 20(16): 3336-3349. |
| [65] | Bryant FM, Hughes D, Hassani-Pak K, et al. Basic leucine zipper transcription factor67 transactivates DELAY of GERMINATION1 to establish primary seed dormancy in Arabidopsis [J]. Plant Cell, 2019, 31(6): 1276-1288. |
| [66] | Murphey M, Kovach K, Elnacash T, et al. DOG1-imposed dormancy mediates germination responses to temperature cues [J]. Environ Exp Bot, 2015, 112: 33-43. |
| [67] | Deng GL, Sun HQ, Hu YL, et al. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis [J]. New Phytol, 2023, 238(2): 688-704. |
| [68] | Jing H, Liu W, Qu GP, et al. SUMOylation of AL6 regulates seed dormancy and thermoinhibition in Arabidopsis [J]. New Phytol, 2025, 245(3): 1040-1055. |
| [69] | Ding ZJ, Yan JY, Li GX, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA [J]. Plant J, 2014, 79(5): 810-823. |
| [70] | Feng CZ, Chen Y, Wang C, et al. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development [J]. Plant J, 2014, 80(4): 654-668. |
| [71] | Luo XF, Dai YJ, Xian BS, et al. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling [J]. J Integr Plant Biol, 2024, 66(5): 909-927. |
| [72] | Zheng XN, Mo WL, Zuo ZC, et al. From regulation to application: the role of abscisic acid in seed and fruit development and agronomic production strategies [J]. Int J Mol Sci, 2024, 25(22): 12024. |
| [73] | Lee HG, Lee K, Seo PJ. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy [J]. Plant Mol Biol, 2015, 87(4/5): 371-381. |
| [74] | Yamamoto A, Kagaya Y, Usui H, et al. Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis [J]. Plant Cell Physiol, 2010, 51(12): 2031-2046. |
| [75] | Magome H, Yamaguchi S, Hanada A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis [J]. Plant J, 2008, 56(4): 613-626. |
| [76] | Yamauchi Y, Takeda-Kamiya N, Hanada A, et al. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds [J]. Plant Cell Physiol, 2007, 48(3): 555-561. |
| [77] | Huang Y, Feng CZ, Ye Q, et al. Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development [J]. PLoS Genet, 2016, 12(2): e1005833. |
| [78] | Xiang Y, Nakabayashi K, Ding J, et al. Reduced Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis [J]. Plant Cell, 2014, 26(11): 4362-4375. |
| [79] | Xiang Y, Song BX, Née G, et al. Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy [J]. Plant Physiol, 2016, 171(4): 2659-2670. |
| [80] | Liu F, Zhang H, Ding L, et al. REVERSAL OF RDO5 1, a homolog of rice seed Dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis [J]. Plant Cell, 2020, 32(6): 1933-1948. |
| [81] | Cao H, Han Y, Li JY, et al. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway [J]. J Exp Bot, 2020, 71(3): 919-933. |
| [82] | Zheng LP, Otani M, Kanno Y, et al. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development [J]. Plant J, 2022, 112(2): 460-475. |
| [83] | Zhang YJ, Miao XL, Xia XC, et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker [J]. Theor Appl Genet, 2014, 127(4): 855-866. |
| [84] | Sugimoto K, Takeuchi Y, Ebana K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice [J]. Proc Natl Acad Sci USA, 2010, 107(13): 5792-5797. |
| [85] | Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination [J]. Plant Cell, 2024, 36(5): 1358-1376. |
| [86] | Hu HM, Du JM. Structure and mechanism of histone methylation dynamics in Arabidopsis [J]. Curr Opin Plant Biol, 2022, 67: 102211. |
| [87] | Lu FL, Cui X, Zhang SB, et al. Arabidopsis REF6 is a histone H3 lysine 27 demethylase [J]. Nat Genet, 2011, 43(7): 715-719. |
| [88] | Chen HH, Tong JH, Fu W, et al. The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism [J]. Plant Physiol, 2020, 184(4): 1969-1978. |
| [89] | Footitt S, Müller K, Kermode AR, et al. Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals [J]. Plant J, 2015, 81(3): 413-425. |
| [90] | Zheng J, Chen FY, Wang Z, et al. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy [J]. New Phytol, 2012, 193(3): 605-616. |
| [91] | Gu DC, Ji RJ, He CM, et al. Arabidopsis histone methyltransferase SUVH5 is a positive regulator of light-mediated seed germination [J]. Front Plant Sci, 2019, 10: 841. |
| [92] | Zha P, Liu SR, Li Y, et al. The evening complex and the chromatin-remodeling factor PICKLE coordinately control seed dormancy by directly repressing DOG1 in Arabidopsis [J]. Plant Commun, 2019, 1(2): 100011. |
| [93] | Gomez-Cabellos S, Toorop PE, Cañal MJ, et al. Global DNA methylation and cellular 5-methylcytosine and H4 acetylated patterns in primary and secondary dormant seeds of Capsella bursa-pastoris (L.) Medik. (shepherd’s purse) [J]. Protoplasma, 2022, 259(3): 595-614. |
| [94] | Han YT, Georgii E, Priego-Cubero S, et al. Arabidopsis histone deacetylase HD2A and HD2B regulate seed dormancy by repressing DELAY OF GERMINATION 1 [J]. Front Plant Sci, 2023, 14: 1124899. |
| [95] | Chen XC, MacGregor DR, Stefanato FL, et al. A VEL3 histone deacetylase complex establishes a maternal epigenetic state controlling progeny seed dormancy [J]. Nat Commun, 2023, 14(1): 2220. |
| [96] | Liu YX, Koornneef M, Soppe WJJ. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy [J]. Plant Cell, 2007, 19(2): 433-444. |
| [97] | Luján-Soto E, Dinkova TD. Time to wake up: epigenetic and small-RNA-mediated regulation during seed germination [J]. Plants, 2021, 10(2): 236. |
| [98] | Zhu HF, Xie WX, Xu DC, et al. DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2018, 115(42): E9962-E9970. |
| [99] | Sall K, Dekkers BJW, Nonogaki M, et al. DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation [J]. Plant J, 2019, 100(1): 7-19. |
| [100] | Kawakatsu T, Ecker JR. Diversity and dynamics of DNA methylation: epigenomic resources and tools for crop breeding [J]. Breed Sci, 2019, 69(2): 191-204. |
| [101] | Prudencio ÁS, Werner O, Martínez-García PJ, et al. DNA methylation analysis of dormancy release in almond (Prunus dulcis) flower buds using epi-genotyping by sequencing [J]. Int J Mol Sci, 2018, 19(11): 3542. |
| [102] | Das SS, Karmakar P, Nandi AK, et al. Small RNA mediated regulation of seed germination [J]. Front Plant Sci, 2015, 6: 828. |
| [103] | Nodine MD, Bartel DP. microRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis [J]. Genes Dev, 2010, 24(23): 2678-2692. |
| [104] | Huo HQ, Wei SH, Bradford KJ. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways [J]. Proc Natl Acad Sci USA, 2016, 113(15): E2199-E2206. |
| [1] | 李新妮, 李俊怡, 马雪华, 何卫, 李佳丽, 于佳, 曹晓宁, 乔治军, 刘思辰. 谷子果胶甲酯酶抑制子PMEI基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2025, 41(7): 150-163. |
| [2] | 刘丽, 王辉, 关天舒, 李柏宏, 于舒怡. 葡萄脱落酸受体VvPYL4互作蛋白的筛选及互作蛋白基因表达[J]. 生物技术通报, 2025, 41(4): 188-197. |
| [3] | 覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160. |
| [4] | 王若若, 曲鹏坤, 张欣, 王珞, 朱英, 田双一, 赵德刚. 杜仲EuGIF1基因鉴定及其表达和蛋白互作分析[J]. 生物技术通报, 2025, 41(12): 267-279. |
| [5] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
| [6] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
| [7] | 陈应娥, 梁巧兰. 植物脱落酸及其受体基因PYL9的作用研究进展[J]. 生物技术通报, 2024, 40(12): 1-11. |
| [8] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
| [9] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
| [10] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
| [11] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
| [12] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
| [13] | 黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9): 234-247. |
| [14] | 李上云, 王晨, 宣旭娴, 任艳华, 房经贵. 葡萄种子休眠研究进展[J]. 生物技术通报, 2021, 37(5): 117-127. |
| [15] | 郑伟, 周涛, 江维克, 李军, 肖承鸿, 杨昌贵, 张晨, 龚安慧, 韦德群, 毕艳. 外源PBZ和GA3对太子参发育过程内源IAA积累及其相关基因表达的影响[J]. 生物技术通报, 2019, 35(2): 46-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||