生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 190-200.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0809
• 未来食品工程专题 • 上一篇
梁颖怡(
), 赵安宿, 王瑞曦, 沈天虹, 马欣荣, 王敏, 骆健美(
)
收稿日期:2025-07-26
出版日期:2025-11-26
发布日期:2025-12-09
通讯作者:
骆健美,女,博士,教授,研究方向 :微藻色素;E-mail: luojianmei@tust.edu.cn作者简介:梁颖怡,女,硕士研究生,研究方向 :微藻色素;E-mail: 908289174@qq.com
基金资助:
LIANG Ying-yi(
), ZHAO An-su, WANG Rui-xi, SHEN Tian-hong, MA Xin-rong, WANG Min, LUO Jian-mei(
)
Received:2025-07-26
Published:2025-11-26
Online:2025-12-09
摘要:
目的 新黄素是一种广泛存在于绿色植物中的脂溶性类胡萝卜素,不仅是光合作用中不可或缺的关键色素,还具有抗氧化等多种重要的生理功能。深入分析影响新黄素合成的培养条件及相关蛋白质,对其产量提升具有重要意义。 方法 以模式微藻莱茵衣藻为对象,考察不同培养条件(缺氮、缺硫、光照强度)对新黄素合成的影响;基于生物信息学分析、RNA干扰技术、转录水平和HPLC检测相结合的方法,挖掘影响莱茵衣藻中新黄素合成的相关蛋白质。 结果 光照强度从3 000 lx提高到4 000 lx时,莱茵衣藻的新黄素含量提高16.1%,而缺氮和缺硫条件下的新黄素含量分别比正常条件下降37.2%和42.6%。3个含有DUF4281功能域的假定蛋白质中,nxs2和nxs3转录水平的下降使得新黄素含量分别提高17.4%和33.7%,而nxs1的干扰无明显影响。进一步分析发现,4 000 lx光照和缺硫条件下,nxs3的转录水平分别降低30.4%和提高34.0%,该变化分别与新黄素含量在4 000 lx条件下的上升和缺硫条件下的下降趋势对应。 结论 4 000 lx光照条件比3 000 lx更有利于新黄素合成,缺氮和缺硫条件则产生抑制作用。nxs2和nxs3负向调控莱茵衣藻的新黄素合成,而nxs1无显著影响。
梁颖怡, 赵安宿, 王瑞曦, 沈天虹, 马欣荣, 王敏, 骆健美. 莱茵衣藻新黄素合成相关蛋白质的挖掘与分析[J]. 生物技术通报, 2025, 41(11): 190-200.
LIANG Ying-yi, ZHAO An-su, WANG Rui-xi, SHEN Tian-hong, MA Xin-rong, WANG Min, LUO Jian-mei. Mining and Analysis of Proteins Associated with Neoxanthin Biosynthesis in Chlamydomonas reinhardtii[J]. Biotechnology Bulletin, 2025, 41(11): 190-200.
名称 Name | 引物序列 Primer sequence (5′-3′) | 用途 Application |
|---|---|---|
| aR-nxs1-F | 干扰藻株构建引物 | |
| aR-nxs1-R | 干扰藻株构建引物 | |
| aR-nxs2-F | 干扰藻株构建引物 | |
| aR-nxs2-R | 干扰藻株构建引物 | |
| aR-nxs3-F | 干扰藻株构建引物 | |
| aR-nxs3-R | 干扰藻株构建引物 | |
| AmiRNAprecF | GGTGTTGGGTCGGTGTTTTTG | 菌落PCR引物 |
| SpacerR | TAGCGCTGATCACCACCACCC | 菌落PCR引物 |
| Luciferase-F | CCATATGGTCAACGGCGTGAAGGTG | 干扰藻株初筛引物 |
| Luciferase-R | GCCGCCGGCGCCCTTGATCTTGTCC | 干扰藻株初筛引物 |
| nxs1-qF | TCATTCTCACCGTGGTAGCTGG | RT-qPCR引物 |
| nxs1-qR | AAGAACTGCGGGTTGAAGC | RT-qPCR引物 |
| nxs2-qF | GCTCACCCTGGATGTAGTCAT | RT-qPCR引物 |
| nxs2-qR | CGGTGGGTCCGAAGAAGAAG | RT-qPCR引物 |
| nxs3-qF | CGGACTTCAGCGAGATGTTC | RT-qPCR引物 |
| nxs3-qR | CAACCATCATGCACAGGAACAG | RT-qPCR引物 |
| α-tubulin-qF | CTCGCTTCGCTTTGACGGTG | 内参 |
| α-tubulin-qR | CGTGGTACGCCTTCTCGGC | 内参 |
表1 本实验所用引物
Table 1 Primers used in this experiment
名称 Name | 引物序列 Primer sequence (5′-3′) | 用途 Application |
|---|---|---|
| aR-nxs1-F | 干扰藻株构建引物 | |
| aR-nxs1-R | 干扰藻株构建引物 | |
| aR-nxs2-F | 干扰藻株构建引物 | |
| aR-nxs2-R | 干扰藻株构建引物 | |
| aR-nxs3-F | 干扰藻株构建引物 | |
| aR-nxs3-R | 干扰藻株构建引物 | |
| AmiRNAprecF | GGTGTTGGGTCGGTGTTTTTG | 菌落PCR引物 |
| SpacerR | TAGCGCTGATCACCACCACCC | 菌落PCR引物 |
| Luciferase-F | CCATATGGTCAACGGCGTGAAGGTG | 干扰藻株初筛引物 |
| Luciferase-R | GCCGCCGGCGCCCTTGATCTTGTCC | 干扰藻株初筛引物 |
| nxs1-qF | TCATTCTCACCGTGGTAGCTGG | RT-qPCR引物 |
| nxs1-qR | AAGAACTGCGGGTTGAAGC | RT-qPCR引物 |
| nxs2-qF | GCTCACCCTGGATGTAGTCAT | RT-qPCR引物 |
| nxs2-qR | CGGTGGGTCCGAAGAAGAAG | RT-qPCR引物 |
| nxs3-qF | CGGACTTCAGCGAGATGTTC | RT-qPCR引物 |
| nxs3-qR | CAACCATCATGCACAGGAACAG | RT-qPCR引物 |
| α-tubulin-qF | CTCGCTTCGCTTTGACGGTG | 内参 |
| α-tubulin-qR | CGTGGTACGCCTTCTCGGC | 内参 |
| 时间Time (min) | 流速 Flow rate (mL/min) | A(%) | B(%) | C(%) |
|---|---|---|---|---|
| 0 | 1.0 | 100 | 0 | 0 |
| 4 | 1.0 | 0 | 100 | 0 |
| 18 | 1.0 | 0 | 20 | 80 |
| 21 | 1.0 | 0 | 100 | 0 |
| 29 | 1.0 | 100 | 0 | 0 |
表2 新黄素的液相梯度洗脱条件
Table 2 Liquid phase gradient elution conditions for neoxanthin
| 时间Time (min) | 流速 Flow rate (mL/min) | A(%) | B(%) | C(%) |
|---|---|---|---|---|
| 0 | 1.0 | 100 | 0 | 0 |
| 4 | 1.0 | 0 | 100 | 0 |
| 18 | 1.0 | 0 | 20 | 80 |
| 21 | 1.0 | 0 | 100 | 0 |
| 29 | 1.0 | 100 | 0 | 0 |
图1 培养条件对莱茵衣藻生长和色素合成的影响A:生长曲线;B:对数中期的培养液状态;C:新黄素含量;D:叶绿素含量;E:类胡萝卜素含量;F:油脂含量;柱状图的数值为平均值±标准差(n=3);*,**,***分别表示P<0.05,P<0.01,P<0.001,下同
Fig. 1 Effects of culture conditions on the growth and pigment biosynthesis in C. reinhardtiiA: Growth curves. B: Culture status at mid-logarithmic phase. C: Neoxanthin content. D: Chlorophyll content. E: Carotenoid content. F: Lipid content. The values in the bar charts are of the mean±standard error (n=3); *, **, *** indicate P<0.05, P<0.01, P<0.001, respectively, the same below
基因 Gene | 染色体 Chromosome | 基因长度 Gene length (bp) | 染色体初始位置 Start locus on chromosome | 染色体结束位置 End locus on chromosome |
|---|---|---|---|---|
| nxs1 | 3 | 2 172 | 7289912 | 7292083 |
| nxs2 | 6 | 2 251 | 926797 | 929047 |
| nxs3 | 12 | 1 942 | 9172926 | 9174867 |
表3 莱茵衣藻中3个新黄素合成相关候选基因的染色体位置
Table 3 Chromosomal locations of three neoxanthin synthase candidate genes in C. reinhardtii
基因 Gene | 染色体 Chromosome | 基因长度 Gene length (bp) | 染色体初始位置 Start locus on chromosome | 染色体结束位置 End locus on chromosome |
|---|---|---|---|---|
| nxs1 | 3 | 2 172 | 7289912 | 7292083 |
| nxs2 | 6 | 2 251 | 926797 | 929047 |
| nxs3 | 12 | 1 942 | 9172926 | 9174867 |
基因 Gene | 氨基酸长度 Amino acid length (aa) | 与文献鉴定的新黄素合成酶氨基酸序列一致性 Amino acid sequence identity to the identified neoxanthin synthase in literature (%) | DUF4281功能域位置 DUF4281 domain position | 与文献鉴定的新黄素合成酶的DUF4281的氨基酸序列一致性DUF4281 amino acid sequence identity to identified neoxanthin synthase in literature (%) | ||
|---|---|---|---|---|---|---|
拟南芥 A. thalian | 羽衣甘蓝 Chinese kale | 拟南芥 A. thalian | 羽衣甘蓝 Chinese kale | |||
| nxs1 | 258 | 49.1 | 48.9 | 91-222 | 55.3 | 54.9 |
| nxs2 | 226 | 46.8 | 46.6 | 75-214 | 46.2 | 46.2 |
| nxs3 | 105 | 21.5 | 21.8 | 3-72 | 31.1 | 31.1 |
表4 莱茵衣藻中3个候选蛋白质与拟南芥新黄素合成酶的氨基酸序列及功能域分析
Table 4 Analysis of amino acid sequences and functional domains between three candidate proteins in C. reinhardtii and A. thalian neoxanthin synthase
基因 Gene | 氨基酸长度 Amino acid length (aa) | 与文献鉴定的新黄素合成酶氨基酸序列一致性 Amino acid sequence identity to the identified neoxanthin synthase in literature (%) | DUF4281功能域位置 DUF4281 domain position | 与文献鉴定的新黄素合成酶的DUF4281的氨基酸序列一致性DUF4281 amino acid sequence identity to identified neoxanthin synthase in literature (%) | ||
|---|---|---|---|---|---|---|
拟南芥 A. thalian | 羽衣甘蓝 Chinese kale | 拟南芥 A. thalian | 羽衣甘蓝 Chinese kale | |||
| nxs1 | 258 | 49.1 | 48.9 | 91-222 | 55.3 | 54.9 |
| nxs2 | 226 | 46.8 | 46.6 | 75-214 | 46.2 | 46.2 |
| nxs3 | 105 | 21.5 | 21.8 | 3-72 | 31.1 | 31.1 |
图2 新黄素合成相关蛋白质生物信息学分析A:莱茵衣藻中3个候选蛋白质和文献已鉴定的新黄素合成酶的氨基酸序列比对,图中AtNXS,拟南芥新黄素合成酶;BoaNXS,羽衣甘蓝新黄素合成酶;CrNXS1-3,莱茵衣藻中3个新黄素合成相关候选蛋白质;红色框表示为DUF4281功能域;B: 氨基酸组成;C:跨膜区预测分析;D:三级结构预测,绿色表示α-helix,粉色表示β-sheet,红色表示DUF4281功能域
Fig. 2 Bioinformatics analysis of proteins associated with neoxanthin synthesisA: Amino acid sequence alignment of three candidate proteins in C. reinhardtii with the identified neoxanthin synthase in literature;AtNXS (neoxanthin synthase in A. thaliana), BoaNXS (neoxanthin synthase in Brassica oleracea var. acephala), CrNXS1-3 (neoxanthin synthase in C. reinhardtii). The conserved DUF4281 domain is boxed in red. B: Amino acid composition. C: Prediction analysis of transmembrane domain. D: The predicted tertiary structure is depicted as α-helices (green), β-sheets (pink), and the DUF4281 domain (red)
基因 Gene | 分子式 Molecular formula | 等电点 Isoelectric point (pI) | 不稳定指数 Instability index | 疏水性Hydropathicity (GRAVY) | 脂肪族指数 Aliphatic index | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| nxs1 | C1228H1968N316O328S13 | 9.61 | 37.71 | 0.59 | 107.52 | Chloroplast |
| nxs2 | C1024H1659N289O272S10 | 10.77 | 42.27 | 0.863 | 114.38 | Plasma membrane |
| nxs3 | C520H816N130O137S9 | 8.91 | 46.29 | 0.357 | 92.98 | Chloroplast |
表5 莱茵衣藻中3个新黄素合成相关候选蛋白质的理化性质和亚细胞定位预测
Table 5 Physicochemical properties and subcellular localization prediction of three candidate neoxanthin synthase proteins in C. reinhardtii
基因 Gene | 分子式 Molecular formula | 等电点 Isoelectric point (pI) | 不稳定指数 Instability index | 疏水性Hydropathicity (GRAVY) | 脂肪族指数 Aliphatic index | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| nxs1 | C1228H1968N316O328S13 | 9.61 | 37.71 | 0.59 | 107.52 | Chloroplast |
| nxs2 | C1024H1659N289O272S10 | 10.77 | 42.27 | 0.863 | 114.38 | Plasma membrane |
| nxs3 | C520H816N130O137S9 | 8.91 | 46.29 | 0.357 | 92.98 | Chloroplast |
图3 RNAi藻株的转录水平和色素含量A-C:分别为nxs1、nxs2、nxs3基因RNAi藻株的转录水平;D:新黄素含量;E:叶绿素含量;F:类胡萝卜素含量
Fig. 3 Transcriptional level and pigment content of the RNAi strainsA: nxs1. B: nxs2. C: nxs3. D: neoxanthin content. E: Chlorophyll content. F: Carotenoid content
图4 不同培养条件下nxs3基因相对转录水平(Control为1)
Fig. 4 Relative transcriptional levels of the nxs3 gene under different culture conditions (normalized to Control as 1)
| [1] | Gauthier MR, Senhorinho GNA, Scott JA. Microalgae under environmental stress as a source of antioxidants [J]. Algal Res, 2020, 52: 102104. |
| [2] | Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants [J]. Trends Plant Sci, 2002, 7(1): 41-48. |
| [3] | Goldsmith TH, Krinsky NI. The epoxide nature of the carotenoid, neoxanthin [J]. Nature, 1960, 188: 491-493. |
| [4] | Cholnoky L, Györgyfy K, Rónai A, et al. Carotenoids and related compounds. Part XXI. Structure of neoxanthin (foliaxanthin) [J]. J Chem Soc C, 1969(9): 1256-1263. |
| [5] | Märki-Fischer E, Eugster CH. Neoflor und 6-epineoflor aus blüten von Trollius europaeus; hochfeld-1H-NMR-spektren von neoxanthin und (9'Z)-neoxanthin [J]. Helv Chim Acta, 1990, 73(6): 1637-1643. |
| [6] | Wang K, Tu WF, Liu C, et al. 9-Cis-neoxanthin in light harvesting complexes of photosystem II regulates the binding of violaxanthin and xanthophyll cycle [J]. Plant Physiol, 2017, 174(1): 86-96. |
| [7] | Giossi C, Cartaxana P, Cruz S. Photoprotective role of neoxanthin in plants and algae [J]. Molecules, 2020, 25(20): 4617. |
| [8] | Terasaki M. Potential ability of xanthophylls to prevent obesity-associated cancer [J]. World J Pharmacol, 2014, 3(4): 140. |
| [9] | Udayawara Rudresh D, Maradagi T, Stephen NM, et al. Neoxanthin prevents H2O2-induced cytotoxicity in HepG2 cells by activating endogenous antioxidant signals and suppressing apoptosis signals [J]. Mol Biol Rep, 2021, 48(10): 6923-6934. |
| [10] | Kotake-Nara E, Miyashita K, Nagao A, et al. Carotenoids affect proliferation of human prostate cancer cells [J]. J Nutr, 2001, 131(12): 3303-3306. |
| [11] | Kotake-Nara E, Asai A, Nagao A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells [J]. Cancer Lett, 2005, 220(1): 75-84. |
| [12] | Asai A, Terasaki M, Nagao A. An epoxide-furanoid rearrangement of spinach neoxanthin occurs in the gastrointestinal tract of mice and in vitro: formation and cytostatic activity of neochrome stereoisomers [J]. J Nutr, 2004, 134(9): 2237-2243. |
| [13] | Terasaki M, Asai A, Zhang H, et al. A highly polar xanthophyll of 9'-Cis-neoxanthin induces apoptosis in HCT116 human colon cancer cells through mitochondrial dysfunction [J]. Mol Cell Biochem, 2007, 300(1): 227-237. |
| [14] | Sekiya M, Suzuki S, Ushida Y, et al. Neoxanthin in young vegetable leaves prevents fat accumulation in differentiated adipocytes [J]. Biosci Biotechnol Biochem, 2021, 85(10): 2145-2152. |
| [15] | Phadwal K, Singh PK. Effect of nutrient depletion on β-carotene and glycerol accumulation in two strains of Dunaliella sp [J]. Bioresour Technol, 2003, 90(1): 55-58. |
| [16] | 黄昆美. 利用基因工程提高莱茵衣藻细胞中类胡萝卜素含量的研究[D]. 青岛: 青岛科技大学, 2022. |
| Huang KM. Study on improving the content of carotenoids in Chlamydomonas Reinhardtii cells by genetic engineering [D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
| [17] | Becker C, Urlić B, Jukić Špika M, et al. Nitrogen limited red and green leaf lettuce accumulate flavonoid glycosides, caffeic acid derivatives, and sucrose while losing chlorophylls, Β-carotene and xanthophylls [J]. PLoS One, 2015, 10(11): e0142867. |
| [18] | North HM, De Almeida A, Boutin JP, et al. The Arabidopsis ABA-deficient mutant Aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers [J]. Plant J, 2007, 50(5): 810-824. |
| [19] | Jian Y, Zhang CL, Wang YT, et al. Characterization of the role of the neoxanthin synthase gene BoaNXS in carotenoid biosynthesis in Chinese kale [J]. Genes, 2021, 12(8): 1122. |
| [20] | Harris EH. CHLAMYDOMONAS as a model organism [J]. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 363-406. |
| [21] | Yang L, Chen J, Qin S, et al. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii [J]. Biotechnol Biofuels, 2018, 11(1): 40. |
| [22] | Sakarika M, Kornaros M. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies [J]. Bioresour Technol, 2017, 243: 356-365. |
| [23] | Lv Y, Han F, Liu MX, et al. Characteristics of N 6-methyladenosine modification during sexual reproduction of Chlamydomonas reinhardtii [J]. Genom Proteom Bioinform, 2023, 21(4): 756-768. |
| [24] | Fabrowska J, Ibañez E, Łęska B, et al. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae [J]. Algal Res, 2016, 19: 237-245. |
| [25] | Akella S, Ma XR, Bacova R, et al. Co-targeting strategy for precise, scarless gene editing with CRISPR/Cas9 and donor ssODNs in Chlamydomonas [J]. Plant Physiol, 2021, 187(4): 2637-2655. |
| [26] | Nama S, Madireddi SK, Yadav RM, et al. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress [J]. Photosynth Res, 2019, 139(1): 387-400. |
| [27] | Wright SW, Jeffrey SW, Mantoura RFC, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton [J]. Mar Ecol Prog Ser, 1991, 77(2-3): 183-196. |
| [28] | Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [J]. Biochem Soc Trans, 1983, 11(5): 591-592. |
| [29] | Zheng SY, Zou SY, Feng T, et al. Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii [J]. Bioresour Technol, 2022, 348: 126746. |
| [30] | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4): 402-408. |
| [31] | Shang QY, Yan YX, Zhang YN, et al. Advanced microalgal cultivation in biomethanation digestate to maximize resource utilization of food waste leachate [J]. J Environ Manag, 2025, 391: 126379. |
| [32] | Hess SK, Lepetit B, Kroth PG, et al. Production of chemicals from microalgae lipids-status and perspectives [J]. Eur J Lipid Sci Technol, 2018, 120(1): 1700152. |
| [33] | Neuman H, Galpaz N, Cunningham FX Jr, et al. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis [J]. Plant J, 2014, 78(1): 80-93. |
| [34] | Perreau F, Frey A, Effroy-Cuzzi D, et al. Abscisic acid-deficient4 has an essential function in both Cis-Violaxanthin and Cis-Neoxanthin synthesis [J]. Plant Physiol, 2020, 184(3): 1303-1316. |
| [1] | 黄雯婧, 任思潮, 林俐, 王幼平, 吴健. RNA干扰在植物功能基因组学和遗传改良中的应用研究进展[J]. 生物技术通报, 2025, 41(9): 1-21. |
| [2] | 李亚, 蒋林, 徐闯, 王苏慧, 马曌, 王亮. 莱茵衣藻响应重金属胁迫的分子防御机制研究进展[J]. 生物技术通报, 2025, 41(8): 53-64. |
| [3] | 陈海敏, 孙菲, 袁源, 吴佳雯, 江红, 周剑. 紫外诱变选育巴弗洛霉素A1高产菌株及其培养基优化[J]. 生物技术通报, 2025, 41(3): 51-61. |
| [4] | 张严化, 曲文龙, 戴文静, 张睿宁, 刘羽鸿, 王德培, 薛鲜丽. 一株高产维生素B13不动杆菌鉴定及发酵条件优化[J]. 生物技术通报, 2025, 41(11): 153-165. |
| [5] | 李旺宁, 张豪杰, 李亚男, 梁梦静, 季春丽, 张春辉, 李润植, 崔玉琳, 秦松, 崔红利. 莱茵衣藻蓝光受体植物类型隐花色素CRY突变体的表型鉴定[J]. 生物技术通报, 2023, 39(2): 243-253. |
| [6] | 张龙喜, 吕琳, 张欢欢, 周金成, 车午男, 董辉. RNAi技术在寄生蜂中的应用研究进展[J]. 生物技术通报, 2023, 39(12): 99-108. |
| [7] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
| [8] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
| [9] | 张美君, 吴庆, 尹翠, 王妮, 马晓庆, 马晓霞, 曹云娥. 尖镰孢黄瓜专化型枯萎病菌拮抗菌的筛选、鉴定及培养条件优化[J]. 生物技术通报, 2020, 36(9): 125-136. |
| [10] | 杨镇州, 刘刚, 许丽. 基于RNAi技术的转基因玉米逆转录数字PCR检测方法[J]. 生物技术通报, 2020, 36(5): 56-63. |
| [11] | 张维娇, 金学荣, 徐雅晴, 李江华, 堵国成, 康振. 枯草芽孢杆菌表达与调控工具相关研究进展[J]. 生物技术通报, 2020, 36(4): 26-33. |
| [12] | 张亭, 杨璇璇, 雷勤, 刘娟娟, 李继刚. 辛硫磷、灭多威和dsRNA饲喂对棉铃虫ace基因表达的影响[J]. 生物技术通报, 2018, 34(7): 160-165. |
| [13] | 石佳, 杨丹丹 ,葛慧雯 ,杜京尧 ,梁卫红. 水稻OsMPK15的cDNA克隆和转录水平分析[J]. 生物技术通报, 2018, 34(6): 66-72. |
| [14] | 邓超, 杜秀娟, 黄涛, 郭英, 李炳学, 卜宁. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3): 194-199. |
| [15] | 郭红艳, 高涵, 吴琦, 孙晓杰, 刘秀财, 赵立群. SGK3基因RNAi慢病毒载体的构建及其对乳腺癌MB-474细胞增殖和凋亡的影响[J]. 生物技术通报, 2018, 34(1): 247-252. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||