生物技术通报 ›› 2026, Vol. 42 ›› Issue (4): 239-250.doi: 10.13560/j.cnki.biotech.bull.1985.2025-1094
• 研究报告 • 上一篇
刘青媛1(
), 吴洪启1, 陈秀娥2, 陈剑2, 姜远泽2, 何燕子1, 喻奇伟2(
), 刘仁祥1(
)
收稿日期:2025-10-16
出版日期:2026-02-09
发布日期:2026-02-09
通讯作者:
刘仁祥,男,博士,教授,研究方向 :烟草遗传育种;E-mail: rxliu@gzu.edu.cn作者简介:刘青媛,女,硕士研究生,研究方向 :烟草遗传育种;E-mail: 18188242208@163.com
基金资助:
LIU Qing-yuan1(
), WU Hong-qi1, CHEN Xiu-e2, CHEN Jian2, JIANG Yuan-ze2, HE Yan-zi1, YU Qi-wei2(
), LIU Ren-xiang1(
)
Received:2025-10-16
Published:2026-02-09
Online:2026-02-09
摘要:
目的 基于转录组测序分析烟草NtMYB96a基因在干旱胁迫响应中的功能,解析其调控机制,为培育抗旱烟草新种质提供重要的参考基因。 方法 克隆NtMYB96a并构建过表达载体转化烟草,开展亚细胞定位及叶片表达模式分析;在苗期通过体内活性氧清除系统评价过表达株系的耐旱生理特性。利用RNA-seq对NtMYB96a过表达阳性植株进行转录组测序,并对差异表达基因进行GO和KEGG功能注释及富集分析。 结果 亚细胞定位显示NtMYB96a定位于细胞核。RT-qPCR结果表明NtMYB96a在根、茎、叶中均有表达,其中叶片表达量最高,且在不同生育时期呈现差异表达。干旱胁迫下,与野生型相比,过表达株系表现出更强的耐旱能力,表现为萎蔫程度减轻,CAT、POD和SOD活性显著提高,MDA含量显著降低。转录组分析显示,NtMYB96a通过调控光合作用、光合生物碳固定、卟啉代谢和光合天线蛋白等相关通路,及bHLH、MYB_related和WRKY等转录因子的表达参与干旱响应。 结论 NtMYB96a在烟草干旱胁迫响应中发挥正调控作用,通过增强抗氧化酶活性并调控干旱相关代谢通路和转录因子网络,从而提高烟草耐旱性。
刘青媛, 吴洪启, 陈秀娥, 陈剑, 姜远泽, 何燕子, 喻奇伟, 刘仁祥. 转录因子NtMYB96a调控烟草耐旱性的功能研究[J]. 生物技术通报, 2026, 42(4): 239-250.
LIU Qing-yuan, WU Hong-qi, CHEN Xiu-e, CHEN Jian, JIANG Yuan-ze, HE Yan-zi, YU Qi-wei, LIU Ren-xiang. Function of Transcription Factor NtMYB96a in Regulating the Tolerance of Tobacco to Drought[J]. Biotechnology Bulletin, 2026, 42(4): 239-250.
图3 NtMYB96a基因的筛选及其表达特性分析A:干旱胁迫转录组数据中NtMYB96s基因的FPKM值;B:干旱胁迫下NtMYB96a和NtMYB96b基因表达情况;C:NtMYB96a在烟草苗期组织及不同发育时期叶片中的表达水平分析;D:NtMYB96a的亚细胞定位分析。不同小写字母表示在P<0.05水平差异显著(t检验),数据均为3次生物学重复的平均值±标准差,下同
Fig. 3 Screening and expression characterization analysis of the NtMYB96a geneA: FPKM values of NtMYB96s genes from transcriptome data under drought stress. B: Expressions of NtMYB96a and NtMYB96bunder drought stress. C: Expression analysis of NtMYB96a in tissues of tobacco seedlings and in leaves at different developmental stages. D: Subcellular localization analysis of NtMYB96a. Different lowercase letters indicate statistically significant differences at P<0.05 (t test). All data are presented as mean ± SD from three biological replicates. The same below
图4 NtMYB96a基因的克隆及其过表达株系的创制A:NtMYB96a基因的CDS扩增;B:NtMYB96a过表达烟草阳性植株鉴定(M:marker;-:阴性对照;+:阳性对照;1‒6:T0代阳性植株);C:NtMYB96a在过表达植株中的表达水平分析;星号表示与野生型(WT)植株的差异显著性,t检验,3次生物学重复,* P<0.05,** P<0.01,下同
Fig. 4 Cloning and generation of overexpressing lines of NtMYB96aA: Amplification of the CDS region of NtMYB96a gene. B: Identification of positive transgenic tobacco plants overexpressing NtMYB96a (M: marker; -: negative control; +: positive control; 1-6: T0 generation positive plants). C: Expression analysis of NtMYB96a in overexpression plants. Asterisks indicate statistically significant differences compared with the wild-type (WT) plants. t test, three biological replicates, * P<0.05, ** P<0.01. The same below
图5 干旱胁迫下OE-NtMYB96a#1植株的苗期生长状况和抗氧化物酶活性和丙二醛含量的测定A:干旱胁迫处理下植株的生长表型(标尺=10 cm);B‒E:干旱胁迫下抗氧化物酶活性和丙二醛含量分析
Fig. 5 Determination of seedling growth, antioxidant enzyme activity, and MDA content ofOE-NtMYB96a#1plants under drought stressA: Growing phenotype of plants under drought stress treatment (scale bar=10 cm). B-E: Analysis of antioxidant enzyme activity and MDA content under drought stress
图6 过表达NtMYB96a基因对烟草干旱胁迫转录组的影响A:差异表达基因数量;B:差异表达基因韦恩图;图A和B中4个组分别是干旱处理下0 h的WT(WT_0 h)和OE-NtMYB96a#1(OE_0 h),干旱处理下24 h的WT(WT_24 h)和OE-NtMYB96a#1(OE_24 h);C:OE-NtMYB96a#1特有DEGs的GO富集分析;CC:细胞组分;BP:生物过程;D:OE-NtMYB96a#1特有DEGs的KEGG富集分析
Fig. 6 Effects of NtMYB96a overexpression on the transcriptome of tobacco under drought stressA: Number of differentially expressed genes(DEGs). B: Venn diagram of DEGs. In panel A and B, the four groups are: WT under drought treatment at 0 h (WT_0 h), OE-NtMYB96a#1 under drought treatment at 0 h (OE_0 h), WT under drought treatment at 24 h (WT_24 h) , and OE-NtMYB96a#1 under drought treatment at 24 h (OE_24 h) . C: GO enrichment analysis of OE-NtMYB96a#1-specific DEGs. CC: Cellular component. BP: Biological process. D: KEGG enrichment analysis of DEGs unique to OE-NtMYB96a#1
图7 干旱胁迫下过表达NtMYB96a特有DEGs的热图分析A:光合作用;B:光合生物的碳固定;C:卟啉代谢;D:光合作用‒天线蛋白
Fig. 7 Heatmap analysis of DEGsspecifically regulated by NtMYB96a overexpressionunder drought stressA: Photosynthesis. B: Carbon fixation of photosynthetic organisms. C: Porphyrin metabolism. D: Photosynthesis-antenna protein
图8 干旱胁迫下过表达NtMYB96a特有DEGs中转录因子家族分析A:转录因子家族统计;B:干旱胁迫下转录因子家族成员的表达分析
Fig. 8 Analysis of transcription factor families among DEGs specifically regulated by NtMYB96a overexpression under drought stressA: Statistics of transcription factor families. B: Expression analysis of transcription factor family members under drought stress
图9 干旱胁迫下WT和过表达NtMYB96a中叶绿素合成及光合作用相关基因的表达水平
Fig. 9 Expressions of genes related to chlorophyll biosynthesis and photosynthesis in wild-type and NtMYB96a -overexpressing plants under drought stress
| [1] | 彭文婷, 李庆, 代明球. 作物抗旱关键调控因子的挖掘与利用 [J]. 科学通报, 2025, 70(19): 3149-3167. |
| Peng WT, Li Q, Dai MQ. Exploitation of key regulatory factors and breeding strategies for crop drought resistance [J]. Chin Sci Bull, 2025, 70(19): 3149-3167. | |
| [2] | 李佳, 刘涛, 马菊莲, 等. 烟草响应干旱胁迫与抗旱遗传育种研究进展 [J]. 江苏农业科学, 2023, 51(8): 34-43. |
| Li J, Liu T, Ma JL, et al. Research progress on drought stress response and drought resistance genetic breeding of tobacco [J]. Jiangsu Agric Sci, 2023, 51(8): 34-43. | |
| [3] | Zhang DW, Zhou HP, Zhang Y, et al. Diverse roles of MYB transcription factors in plants [J]. J Integr Plant Biol, 2025, 67(3): 539-562. |
| [4] | Liu YH, Shen Y, Liang M, et al. Identification of peanut AhMYB44 transcription factors and their multiple roles in drought stress responses [J]. Plants, 2022, 11(24): 3522. |
| [5] | Zhao HY, Zhao HQ, Hu YF, et al. Expression of the sweet potato MYB transcription factor IbMYB48 confers salt and drought tolerance in Arabidopsis [J]. Genes, 2022, 13(10): 1883. |
| [6] | Gao J, Zhao Y, Zhao ZK, et al. RRS1 shapes robust root system to enhance drought resistance in rice [J]. New Phytol, 2023, 238(3): 1146-1162. |
| [7] | Pil Joon Seo SBL. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis [J]. Plant Cell, 2011, 23(3): 1138-1152. |
| [8] | 李霞, 张泽伟, 刘泽军, 等. 马铃薯转录因子StMYB96的克隆及功能研究 [J]. 生物技术通报, 2025, 41(7): 181-192. |
| Li X, Zhang ZW, Liu ZJ, et al. Cloning and functional study of transcription factor StMYB96 in potato [J]. Biotechnol Bull, 2025, 41(7): 181-192. | |
| [9] | He JJ, Li CZ, Hu N, et al. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat [J]. Plant Physiol, 2022, 190(3): 1640-1657. |
| [10] | 赵先炎, 齐晨辉, 姜翰, 等. 苹果MpMYB96基因克隆和功能鉴定 [J]. 植物生理学报, 2019, 55(6): 783-792. |
| Zhao XY, Qi CH, Jiang H, et al. Cloning and functional identification of MpMYB96 gene in Malus pumila [J]. Plant Physiol J, 2019, 55(6): 783-792. | |
| [11] | 赵海英, 刘致远, 曹际玲. 纳米银对不同品种玉米幼苗生长和生理特性的影响 [J]. 热带农业科学, 2025, 45(7): 50-57. |
| Zhao HY, Liu ZY, Cao JL. Effects of silver nanoparticles on the growth and physiological characteristics of different varieties of maize seedlings [J]. Chin J Trop Agric, 2025, 45(7): 50-57. | |
| [12] | 孙美华, 孙慧贤, 赵晏俪, 等. 不同供氮水平对番茄果实心室数量的影响 [J]. 园艺学报, 2025, 52(10): 2737-2747. |
| Sun MH, Sun HX, Zhao YL, et al. Effects of different nitrogen concentration on the locule number in tomato fruit [J]. Acta Hortic Sin, 2025, 52(10): 2737-2747. | |
| [13] | Kim JB, Kim SH, Bae DH. The impacts of global warming on arid climate and drought features [J]. Theor Appl Climatol, 2023, 152(1): 693-708. |
| [14] | 王亚虹, 许自成, 高森, 等. 烟草干旱胁迫研究进展 [J]. 节水灌溉, 2016(12): 103-107, 111. |
| Wang YH, Xu ZC, Gao S, et al. Research progress of tobacco drought stress [J]. Water Sav Irrig, 2016(12): 103-107, 111. | |
| [15] | 金伊楠, 张豪洋, 张璐翔, 等. 烟草抗旱相关基因的研究进展 [J]. 烟草科技, 2020, 53(3): 18-26. |
| Jin YN, Zhang HY, Zhang LX, et al. Research progress of drought-resistance related genes in tobacco [J]. Tob Sci Technol, 2020, 53(3): 18-26. | |
| [16] | Wei QH, Zhang F, Sun FS, et al. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants [J]. Plant Sci, 2017, 265: 112-123. |
| [17] | Liu ZY, Li JN, Li S, et al. The 1R-MYB transcription factor SlMYB1L modulates drought tolerance via an ABA-dependent pathway in tomato [J]. Plant Physiol Biochem, 2025, 222: 109721. |
| [18] | Yan ML, Li XX, Ji XY, et al. An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging, osmotic balance, and stomatal opening [J]. Plant Physiol Biochem, 2025, 220: 109536. |
| [19] | Zhang XB, Lei L, Lai JS, et al. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings [J]. BMC Plant Biol, 2018, 18(1): 68. |
| [20] | Wang YX, Zhang MH, Li XY, et al. Overexpression of the wheat TaPsb28 gene enhances drought tolerance in transgenic Arabidopsis [J]. Int J Mol Sci, 2023, 24(6): 5226. |
| [21] | Wang LX, Wang BW, Du QZ, et al. Allelic variation in PtoPsbW associated with photosynthesis, growth, and wood properties in Populus tomentosa [J]. Mol Genet Genomics, 2017, 292(1): 77-91. |
| [22] | Cui L, Zheng FY, Zhang DD, et al. Tomato methionine sulfoxide reductase B2 functions in drought tolerance by promoting ROS scavenging and chlorophyll accumulation through interaction with Catalase 2 and RBCS3B [J]. Plant Sci, 2022, 318: 111206. |
| [23] | Liu EL, Xu LL, Luo ZQ, et al. Transcriptomic analysis reveals mechanisms for the different drought tolerance of sweet potatoes [J]. Front Plant Sci, 2023, 14: 1136709. |
| [24] | Karami S, Shiran B, Ravash R. Molecular investigation of how drought stress affects chlorophyll metabolism and photosynthesis in leaves of C3 and C4 plant species: a transcriptome meta-analysis [J]. Heliyon, 2025, 11(3): e42368. |
| [25] | Wei GQ, Zhang YT, Yang Y, et al. CfCHLM, from Cryptomeria fortunei, promotes chlorophyll synthesis and improves tolerance to abiotic stresses in transgenic Arabidopsis thaliana [J]. Forests, 2024, 15(4): 628. |
| [26] | Ye JJ, Lin XY, Yang ZX, et al. The light-harvesting chlorophyll a/b-binding proteins of photosystem Ⅱ family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant [J]. J Adv Res, 2024, 66: 87-104. |
| [27] | Cheng JQ, Wu TT, Zhou Y, et al. The alternative splicing of HvLHCA4.2 enhances drought tolerance in barley by regulating ROS scavenging and stomatal closure [J]. Int J Biol Macromol, 2025, 307: 142384. |
| [28] | Zhang HY, Wang YL, Song XY, et al. BcLhcb2.1, a Light-harvesting chlorophyll a/b-binding protein from Wucai, plays a positive regulatory role in the response to abiotic stress [J]. Sci Hortic, 2025, 339: 113759. |
| [29] | Zhao S, Gao HB, Luo JW, et al. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress [J]. Plant Physiol Biochem, 2020, 154: 517-529. |
| [30] | Liang YF, Ma F, Li BY, et al. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato [J]. Hortic Res, 2022, 9: uhac198. |
| [31] | Zhao PC, Hou SL, Guo XF, et al. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress [J]. BMC Plant Biol, 2019, 19(1): 564. |
| [32] | Gulzar F, Fu JY, Zhu CY, et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis [J]. Int J Mol Sci, 2021, 22(18): 10080. |
| [1] | 秦子璐, 孙海燕, 陈赢男. 植物表皮毛发育分子调控机制研究进展[J]. 生物技术通报, 2026, 42(9): 1-13. |
| [2] | 殷亚龙, 张明洋, 王洁敏, 苗雪雪, 陈劲, 王伟平. 水稻非生物胁迫协同耐受机制研究进展[J]. 生物技术通报, 2026, 42(4): 26-37. |
| [3] | 苏燕竹, 李达, 张爱爱, 刘永光, 张秀荣, 薛其勤. 大豆CAD基因家族的鉴定及表达分析[J]. 生物技术通报, 2026, 42(4): 101-113. |
| [4] | 任云儿, 伍国强, 成斌, 魏明. 甜菜BvATGs基因家族全基因组鉴定及盐胁迫下表达模式分析[J]. 生物技术通报, 2026, 42(1): 184-197. |
| [5] | 杨跃琴, 邢英, 仲子荷, 田维军, 杨雪清, 王建旭. 甲基汞胁迫下水稻OsMATE34的表达及功能分析[J]. 生物技术通报, 2026, 42(1): 86-94. |
| [6] | 张驰昊, 刘晋囡, 晁跃辉. 蒺藜苜蓿bZIP转录因子MtbZIP29的克隆及功能分析[J]. 生物技术通报, 2026, 42(1): 241-250. |
| [7] | 张月, 戴月华, 张莹莹, 李奥辉, 李楚慧, 薛金爱, 秦慧彬, 陈妍, 聂萌恩, 张海平. 大豆烯酰辅酶A还原酶ECR14基因的克隆与功能分析[J]. 生物技术通报, 2026, 42(1): 95-104. |
| [8] | 吴翠翠, 陈登科, 兰刚, 夏芝, 李朋波. 花生转录因子AhHDZ70的生物信息学分析及耐盐耐旱性研究[J]. 生物技术通报, 2026, 42(1): 198-207. |
| [9] | 陈静欢, 房国楠, 朱文豪, 叶广继, 苏旺, 贺苗苗, 杨生龙, 周云. 马铃薯种质资源淀粉表征及相关基因表达分析[J]. 生物技术通报, 2026, 42(1): 170-183. |
| [10] | 龙林茜, 曾银萍, 王茜, 邓玉萍, 葛敏茜, 陈彦灼, 李鑫娟, 杨军, 邹建. 向日葵GH3基因家族鉴定及其在花发育中的功能分析[J]. 生物技术通报, 2026, 42(1): 125-138. |
| [11] | 曾厅, 张兰, 罗睿. 转录因子MpR2R3-MYB17调控地钱胞芽发育的功能研究[J]. 生物技术通报, 2026, 42(1): 208-217. |
| [12] | 李珊, 马登辉, 马红义, 姚文孔, 尹晓. 葡萄SKP1基因家族鉴定与表达分析[J]. 生物技术通报, 2025, 41(9): 147-158. |
| [13] | 巩慧玲, 邢玉洁, 马俊贤, 蔡霞, 冯再平. 马铃薯LAC基因家族的鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2025, 41(9): 82-93. |
| [14] | 陈强, 于璎霏, 张颖, 张冲. 茉莉酸甲酯对薄皮甜瓜‘绿宝石’采后冷害的调控[J]. 生物技术通报, 2025, 41(9): 105-114. |
| [15] | 王斌, 林冲, 袁晓, 蒋园园, 王玉昆, 肖艳辉. bHLH转录因子UNE10克隆及其在丁香罗勒挥发性化合物合成调控中的功能[J]. 生物技术通报, 2025, 41(9): 207-218. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||