生物技术通报 ›› 2014, Vol. 0 ›› Issue (10): 1-7.
• 综述与专论 • 下一篇
陈劲1, 刘志1, 朱生伟2
收稿日期:2014-03-14
出版日期:2014-10-20
发布日期:2014-10-17
作者简介:陈劲,男,硕士研究生,研究方向:植物基因工程
基金资助:Chen Jin1, Liu Zhi1, Zhu Shengwei2
Received:2014-03-14
Published:2014-10-20
Online:2014-10-17
摘要: 普遍且频繁发生的蚜虫危害给农业生产造成严重损失。就抗蚜虫基因工程研究取得的进展进行综述,分析目前克隆的抗蚜基因及其获得的转基因作物,并讨论转基因抗蚜中存在的问题,探讨通过新的毒杀基因克隆、基因定点突变、增加表达调控元件及利用凝集素蛋白作为运输载体等方法来提高抗蚜效果,为今后抗蚜转基因作物育种研究提供参考。
陈劲, 刘志, 朱生伟. 抗蚜基因及其转基因作物研究进展[J]. 生物技术通报, 2014, 0(10): 1-7.
Chen Jin, Liu Zhi, Zhu Shengwei. Progress in Aphid-resistant Genes and Transgenic Crop Research[J]. Biotechnology Bulletin, 2014, 0(10): 1-7.
| [1] 乔格侠. 蚜虫学研究现状与学科发展趋势[J].昆虫学报, 2006, 49(6):1017-1026. [2] SA, Bos JI. Effector proteins that modulate plant-insect interactions[J]. Current Opinion in Plant Biology, 2011, 14(4):422-428. [3] G, Gradin T, Ahman I, et al. Microarray analysis of the interaction between the aphid Rhopalosiphum padiand host plants reveals both differences and similarities between susceptible and partially resistant barley lines[J]. Molecular Genetics Genomics, 2009, 281(3):233-248. [4] JIB, Prince D, Pitino M, et al. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae(green peach aphid)[J]. PloS Genetics, 2010, 6(11):1-13. [5] LC, Linda LW, Timothy DP. Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene[J]. Entomologia Experimentalis et Applicata, 2006, 121(1):67-72. [6] CL, Walling LL, Paine TD. Behavior and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene[J]. Entomologia Experimentalis et Applicata, 2006, 121(1):67-72. [7] Y, Hill CB, Carlson SR, et al. Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M[J]. Molecular Breeding, 2007, 19(1):25-34. [8] J, Creasy R, Gao L, et al. Aphid resistance in Medicago truncatula involves antixenos is and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs[J]. Plant Physiology Preview, 2005, 137(4):1445-1455. [9] T, Pfeiffer F, Kervella J, et al. Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’[J]. Plant Breeding, 2002, 121(5):459-461. [10] A, Neal JW, McCanna I, et al. Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene[J]. Plant Molecular Biology, 1993, 23(2):325-335. [11] 赵德刚. 转IPT基因油菜提高抗蚜能力[J]. 分子植物育种, 2011, 9(3):343-349. [12] SK, Atif SM, Khan RH, et al. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens:natural and engineered phytoprotection[J]. Archives of Biochemistry and Biophysics, 2004, 431(1):154-159. [13] L, Martinez M, Alfageme F, et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants[J].Transgenic Research, 2011, 20(2):305-319. [14] 侯汉娜, 欧阳青, 等.抗蚜基因及其转基因植物[J].中国生物工程杂志, 2008, 28(6):118-124. [15] DEJM, Lannoo N, Peumans WJ. Plant lectins[J]. Advances in Botanical Research, 2008, 48(3):107-209. [16] 喻修道, 唐克轩, 等.用基因枪法获得转异天南星基因aha抗蚜虫小麦[J].作物学报, 2012, 38(8):1538-1543. [17] PW, Ellington JJ. Comparison of Capsicum annuum and C. pubescens for antixenosis as a means of Aphid resistance[J]. HortScience, 1996, 31(6):1017-1018. [18] VA, Powell KS, Gatehouse AMR, et al. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids[J]. Transgenic Research, 1995, 4(1):18-25. [19] 田芳, 陈孝, 等. 转基因抗虫小麦中sgna 基因的遗传分析及抗虫性鉴定[J].作物学报, 2004, 30(5):475-480. [20] 田芳, 陈孝, 等. 转GNA基因小麦新株系的分子检测和抗蚜虫性鉴定[J].麦类作物学报, 2005, 25(3):7-10. [21] 李群, 李冠.雪花莲凝集素基因转化新疆甜瓜抗蚜虫的研究[J].新疆农业科学, 2009, 46(3):556-560. [22] 甘敬, 尹伟伦, 等. 国槐转雪花莲凝集素基因及抗蚜性[J].吉林科学, 2010, 46(2):51-56. [23] 刘志铭, 刘德璞, 等. CrylA(a)-Pta双价抗虫基因转化粳稻及二化螟抗性评估[J].分子植物育种, 2006, 4(3):345-350. [24] 潘映红, 张淑香, 等. 从掌叶半夏和半夏中发现对几种蚜虫有致死活性的蛋白[J].中国农业科学, 1997, 30(2):94-96. [25] JH, Zhao XY, Liao ZH, et al. Cloning and molecular characterization of a novel lectin gene from Pinellia ternate[J]. Cell Research, 2003, 13(10):301-308. [26] Y, Wei Z. Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis(Bt)endotoxin and Pinellia ternate agglutinin(PTA)[J]. Plant Cell Tissue and Organ Culture, 2008, 94(1):33-44. [27] 董文琦, 党志红, 等. 半夏凝集素基因克隆及其对桃蚜的抗性研究[J]. 南京农业大学学报, 2010, 33(2):45-50. [28] ZM, Yan HB, Pan WL, et al. Transform of an ectopically expressed bulb lectin gene from Pinellia pedatisecta into tobacco plants conferring resistance to aphids[J]. Australian Journal of Crop Science, 2012, 6(5):904-911. [29] J, Zhou SG, Liu XJ, et al. cDNA cloning and expression analysis of a mannose-binding lectin from Pinellia pedatisecta[J]. Journal of Biosciences, 2007, 32(2):241-249. [30] A, Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus[J]. Plant Biology, 1992, 89(24):11774-11778. [31] HN, Zhou YG, Zhang ZS, et al. Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae[J]. Acta Botanica Sinica, 2004, 46(9):1100-1105. [32] J, Luo X, Guo H, et al. Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids[J]. Plant Breeding, 2006, 125(4):390-394. [33] I, Saha P, Majumder P, et al. The efficacy of a novel insecticidal protein. Allium sativum leaf lectin(ASAL), against homopteran insects monitored in transgenic tobacco[J]. Plant Biotechnology Journal, 2005, 3(6):601-611. [34] A, Broeders S, De GH, et al. Expression of garlic leaf lectin under the control of the phloem-specific promoter Asusl from Arabidopsis thaliana protects tobacco plants against the tobacco aphid(Myzus nicotianae)[J]. Pest Management Science, 2007, 63(12):1215-1223. [35] D, Sarkar A, Mondal HA, et al. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin(ASAL)in important pulse crop, chickpea(Cicer arietinum L.)to resist the phloem feeding Aphis craccivora[J]. Transgenic Research, 2009, 18(4):529-544. [36] N, Nardon C, Febvay G, et al. Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum(Harris)and induced effects on the structure of midgut epithelial cells[J]. Journal of Insect Physiology, 2004, 50(12):1137-1150. [37] 转基因抗蚜小麦抗麦长管蚜效果的评价技术研究[D]. 北京:中国农业科学院, 2012. [38] AMR, Davidson GM, Stewart JN, et al. Concanavalin a inhibits development of tomato moth(Lacanobia oleracea)and peach-potato aphid(Myzus persicae)when expressed in transgenic potato plants[J]. Molecular Breeding, 1999, 5(2):153-165. [39] 田颖川, 莽克强, 等. 苋菜凝集素基因的克隆及在转基因烟草中抗蚜性的研究[J].生物工程学报, 2002, 17(3):34-39. [40] 魏源文, 吕维莉, 等. MAR序列介导野苋菜凝集素基因在白菜中的表达[J]. 园艺学报, 2007, 34(2):381-386. [41] S, Venkateswari J, Kirti PB, et al. Transgenic indian mustard(Brassica juncea)with resistance to the mustard aphid(Lipaphis erysimi Kalt.)[J]. Plant Cell Reports, 2002, 20(10):976-981. [42] 吴伯良, 曾仲奎, 等. 海芋凝集素的鉴定及性质研究[J]. 暨南大学学报, 1998, 19(3):89-93. [43] YR, Wang J, Huang BQ, et al. Molecular cloning of a lectin cDNA from Alocasia macrorrhiza and prediction of its characteristics[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(6):634-642. [44] 黄炳球, 侯学文.海芋凝集素对豆蚜淀粉酶、蛋白酶活性的影响[J].广东农业科学, 2010, 10(3):103-105. [45] M, Coleman AD, Maffei ME, et al. Silencing of aphid genes by dsRNA feeding from plants[J]. PloS One, 2011, 6(10):117-128. [46] JJ, Zeng FR. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae transgenic research[J]. Transgenic Research, 2014, 23(1)145-152. [47] GY, Sun XF, Zhang YL, et al. Molecular cloning and characterizationof a prenyltransferase from the cotton aphid, Aphis gossypii[J]. Insect Biochem Mol Biol, 2010, 40(7):552-561. [48] 方丽平, 张亚楠, 等. 棉花抗蚜性与苯丙氨酸解氨酶活性的研究[J]. 昆虫知识, 2008, 45(3):422-425. [49] Y, Wang Y, Bi JL, et al. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat[J]. J Chem Ecol, 2009, 35(2):176-182. [50] XD, Jones HD, Ma YZ, et al.(E)-β-farnesene synthase genes affect aphid(Myzus persicae)infestation in tobacco(Nicotiana tabacum)[J]. Funct Integr Genomics, 2012, 12(1):207-213. [51] MH, Birkett MA, Bruce TJA, et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior[J].Proceedings of the National Academy of Sciences of the USA, 2006, 103(27):10509-10513. [52] PF, Lagrimini LM, Carozzi N, et al. Advances in insect control:the role of transgenic plants[C]. Taylor & Francis, 1997:1195-2231. [53] L, Martinez M, Alfageme F, et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants[J]. Transgenic Research, 2011, 20(2):305-319. [54] J, Wu YQ, Xu WG, et al. The impact of transgenic wheat expressing GNA(snowdrop lectin)on the aphids sitobion avenae, schizaphis graminum, and Rhopalosiphum padi[J]. Entomological Society of America, 2011, 40(3):743-748. [55] J, Babendreier D, Wackers FL. Consumption of snowdrop lectin(Galanthus nivalis agglutinin)causes direct effects on adult parasitic wasps[J]. Oecologia, 2003, 134(4):528-536. [56] PAM, Wackers FL, Woodring JR, et al. Snowdrop lectin(Galanthus nivalis agglutinin)in aphid honeydew negatively affects survival of a honeydew-consuming parasitoid[J]. Agricultural and Forest Entomology, 2009, 11(2):161-173. [57] A, Griffiths S, Palacias N, et al. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV35S promoter and confirms the predominance of microhomology mediat-ed recombination[J]. Plant Journal, 1999, 17(6):591-601. [58] N, Broido S, Soreq H, et al. Efficient functioning of plant promoters and poly(A)sites in Xenopus oocytes[J]. Nucleic Acids Research, 1989, 17(19):7891-7903. [59] MD, Cheng WY, Summers HE, et al. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes[J]. National Academy of Sciences, 2010, 107(33):14673-14678. [60] 赵存友, 周岩, 等. 雪花莲凝集素基因(gna)的改造及其抗蚜性[J]. 植物学报, 2001, 48(6):592-597. [61] HM, Guo HN, Jia YT, et al. The effect of TMV-RNA un-translation region on the expression lever of foreign gene in en-tire plant[J]. Chin Sci Bull, 2000, 45(6):617-622. [62] 彭爱红, 何永睿, 等. 异源韧皮部特异启动子在转基因枳中的表达[J]. 园艺学报, 2014, 41(1):1-8. [63] 秦红敏, 田颖川. 杨树皮储存蛋白基因启动子的克隆和功能研究[J]. 林业科学, 1999, 35(5):46-50. [64] E, Audsley N, Gatehouse JA, et al. Fusion proteins containing neuropeptides as novel insect control agents:snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion[J]. Insect Biochemistry and Molecular Biology, 2002, 32(12):1653-1661. [65] WJ, Fouquaert E, Jauneau A, et al. The liverwort Marchantia polymorpha expresses orthologs of the fungal Agaricus bisporus agglutinin family[J]. Plant Physiology, 2007, 144(2):637-647. |
| [1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
| [2] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
| [3] | 王祥锟, 宋学宏, 刘金龙, 郭培红, 庄晓峰, 韦良孟, 周凡, 张树宇, 高攀攀, 魏凯. 新型冠状病毒亚单位疫苗研制及其高效免疫增强剂的筛选[J]. 生物技术通报, 2023, 39(1): 305-314. |
| [4] | 徐重新, 张霄, 刘媛, 仲建锋, 谢雅晶, 卢莉娜, 高美静, 刘贤金. 靶向模拟Bt Cry1C蛋白抗虫功能的人源化基因工程抗体筛选及鉴定[J]. 生物技术通报, 2022, 38(5): 191-200. |
| [5] | 马艳琴, 邱益彬, 李莎, 徐虹. 透明质酸的生物合成及其代谢工程的研究进展[J]. 生物技术通报, 2022, 38(2): 252-262. |
| [6] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
| [7] | 王婷, 杨阳, 李金萍, 杜坤. 转基因作物对土壤微生物群落影响的研究进展[J]. 生物技术通报, 2021, 37(9): 255-265. |
| [8] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
| [9] | 邓普荣, 刘勇波. RNAi与转Bt基因技术协同抗虫研究进展[J]. 生物技术通报, 2021, 37(10): 216-224. |
| [10] | 郭振强, 张勇, 曹运齐, 刘云云, 赵于, 吴蔼民. 燃料乙醇发酵技术研究进展[J]. 生物技术通报, 2020, 36(1): 238-244. |
| [11] | 何虎翼, 唐洲萍, 杨鑫, 樊吴静, 谭冠宁, 李丽淑, 何新民. 马铃薯淀粉合成与降解研究进展[J]. 生物技术通报, 2019, 35(4): 101-107. |
| [12] | 张智敏, 庄淼, 金锋杰. 米曲霉基因工程技术的进展[J]. 生物技术通报, 2018, 34(9): 170-176. |
| [13] | 高越, 郭晓鹏, 杨阳, 张苗苗, 李文建, 陆栋. 生物丁醇发酵研究进展[J]. 生物技术通报, 2018, 34(8): 27-34. |
| [14] | 柳方方, 董美, 李凯, 宛煜嵩, 金芜军, 李亮. 转基因成分低水平混杂问题的现状[J]. 生物技术通报, 2017, 33(3): 1-5. |
| [15] | 梁晋刚, 张秀杰. 转基因作物对土壤微生物多样性影响的研究方法[J]. 生物技术通报, 2017, 33(10): 111-116. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||