生物技术通报 ›› 2015, Vol. 31 ›› Issue (11): 27-34.doi: 10.13560/j.cnki.biotech.bull.1985.2015.11.002
龚静1, 柳纯洁2, 缪小平1, 郭安源2
收稿日期:
2015-06-23
出版日期:
2015-11-26
发布日期:
2015-11-26
作者简介:
龚静,女,博士,讲师,研究方向: 生物信息学和分子流行病学;E-mail: gongj@hust.edu.cn
Gong Jing1, Liu Chunjie2, Miao Xiaoping1, Guo Anyuan2
Received:
2015-06-23
Published:
2015-11-26
Online:
2015-11-26
摘要: 长链非编码RNA(lncRNA)是一类长度大于200个核苷酸,且不表现出任何蛋白质编码潜能的RNA。最新研究表明,lncRNA广泛地参与动植物的生长发育及疾病的发生发展等各种生物学过程,具有类型多、数量大且作用范围广等特点。目前对于lncRNA的发现、预测方法、功能及与疾病的关系已有了一系列报道。主要对lncRNA相关SNP文献进行综述,并对lncRNA相关SNP的鉴定与功能预测方法进行介绍。对其中涉及的生物信息学方法及相应的数据库进行全面综述,旨在为lncRNA研究提供新的思路,对复杂疾病的预测、诊断和治疗提供新的依据。
龚静, 柳纯洁, 缪小平, 郭安源. 人类长链非编码RNA相关SNP鉴定与功能预测的研究进展[J]. 生物技术通报, 2015, 31(11): 27-34.
Gong Jing, Liu Chunjie, Miao Xiaoping, Guo Anyuan. Research Progress of the Human Long Non-coding RNA Related SNP Identification and Function Prediction[J]. Biotechnology Bulletin, 2015, 31(11): 27-34.
[1] Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine[J].Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc, 2013, 26(2): 155-165. [2] Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project[J].Nature, 2007, 447(7146): 799-816. [3] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insig-hts into functions[J].Nature Genetics, 2009, 10(3): 155-159. [4] Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA[J].Nature Genetics, 2002, 30(2): 167-174. [5] Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements[J].Nature, 2011, 470(7333): 284-288. [6] Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes[J].Science, 2013, 341(6147): 789-792. [7] Han BW, Chen YQ. Potential pathological and functional links between long noncoding RNAs and hematopoiesis[J].Science Signaling, 2013, 6(289): re5. [8] Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles[J].Molecular Cell, 2009, 33(6): 717-726. [9] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J].Nature, 2010, 464(7291): 1071-1076. [10] Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J].Science, 2010, 329(5992): 689-693. [11] Carlson CS, Eberle MA, Kruglyak L, et al. Mapping complex disease loci in whole-genome association studies[J].Nature, 2004, 429(6990): 446-452. [12] Abecasis GR, Altshuler D, Auton A, et al. A map of human genome variation from population-scale sequencing[J].Nature, 2010, 467(7319): 1061-1073. [13] Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1, 092 human genomes[J].Nature, 2012, 491(7422): 56-65. [14] Hovhannisyan Z, Weiss A, Martin A, et al. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease[J].Nature, 2008, 456(7221): 534-538. [15] Hruska KS, LaMarca ME, Scott CR, et al. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene(GBA)[J].Human Mutation, 2008, 29(5): 567-583. [16] Garvin MR, Saitoh K, Gharrett AJ. Application of single nucleotide polymorphisms to non-model species: a technical review[J].Molecular Ecology Resources, 2010, 10(6): 915-934. [17] Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations[J].Nucleic Acids Research, 2014, 42(Database issue): D1001-1006. [18] Todesco M, Balasubramanian S, Hu TT, et al. Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana[J].Nature, 2010, 465(7298): 632-636. [19] Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early-onset obesity[J].Nature, 2010, 463(7281): 666-670. [20] Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity[J].Nature, 2010, 466(7302): 113-117. [21] Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height[J].Nature, 2010, 467(7317): 832-838. [22] Ramirez-Gonzalez RH, Bonnal R, Caccamo M, et al. Bio-samtools: Ruby bindings for SAMtools, a library for accessing BAM files containing high-throughput sequence alignments[J].Source Code for Biology and Medicine, 2012, 7(1): 6. [23] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Research, 2010, 20(9): 1297-1303. [24] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Research, 2010, 38(16): e164. [25] Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J].Nature Protocols, 2009, 4(7): 1073-1081. [26] Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies[J].Nucleic Acids Research, 2009, 37(Web Server issue): W600-605. [27] Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J].American Journal of Human Genetics, 2007, 81(3): 559-575. [28] Gong J, Tong Y, Zhang HM, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis[J].Human Mutation, 2012, 33(1): 254-263. [29] Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3. 0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways[J].Nucleic Acids Research, 2014, 42(Database issue): D86-91. [30] Petry CJ, Ong KK, Barratt BJ, et al. Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans[J].BMC Genetics, 2005, 6: 22. [31] Verhaegh GW, Verkleij L, Vermeulen SH, et al. Polymorphisms in the H19 gene and the risk of bladder cancer[J].European Urology, 2008, 54(5): 1118-1126. [32] Bayram S, Sumbul AT, Batmaci CY, et al. Effect of HOTAIR rs920778 polymorphism on breast cancer susceptibility and clinicopathologic features in a Turkish population[J].Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 2015, 36(5): DOI: 10.1007/s13277-014-3028-0. [33] Zhang X, Zhou L, Fu G, et al. The identification of an ESCC susceptibility SNP rs920778 that regulates the expression of lncRNA HOTAIR via a novel intronic enhancer[J].Carcinogenesis, 2014, 35(9): 2062-2067. [34] Pan W, Liu L, Wei J, et al. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility[J].Molecular Carcinogenesis, 2015: DOI: 10.1002/mc.22261. [35] Pang KC, Stephen S, Engstrom PG, et al. RNAdb--a comprehensive mammalian noncoding RNA database[J].Nucleic Acids Research, 2005, 33(Database issue): D125-130. [36] Quek XC, Thomson DW, Maag JL, et al. lncRNAdb v2. 0: expanding the reference database for functional long noncoding RNAs[J].Nucleic Acids Research, 2015, 43(Database issue): D168-173. [37] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression[J].Genome Research, 2012, 22(9): 1775-1789. [38] Volders PJ, Helsens K, Wang X, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures[J].Nucleic Acids Research, 2013, 41(Database issue): D246-251. [39] Bu D, Yu K, Sun S, et al. NONCODE v3. 0: integrative annotation of long noncoding RNAs[J].Nucleic Acids Research, 2012, 40(Database issue): D210-215. [40] Xie C, Yuan J, Li H, et al. NONCODEv4: exploring the world of long non-coding RNA genes[J].Nucleic Acids Research, 2014, 42(Database issue): D98-103. [41] Chan WL, Huang HD, Chang JG. lncRNAMap: a map of putative regulatory functions in the long non-coding transcriptome[J].Computational Biology and Chemistry, 2014, 50: 41-49. [42] Bhartiya D, Pal K, Ghosh S, et al. lncRNome: a comprehensive knowledgebase of human long noncoding RNAs[J].Database: the Journal of Biological Databases and Curation, 2013, 2013: bat034. [43] Niazi F, Valadkhan S. Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3’ UTRs[J].RNA, 2012, 18(4): 825-843. [44] Li JH, Liu S, Zhou H, et al. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J].Nucleic Acids Research, 2014, 42(Database issue): D92-97. [45] Dinger ME, Pang KC, Mercer TR, et al. NRED: a database of long noncoding RNA expression[J].Nucleic Acids Research, 2009, 37(Database issue): D122-126. [46] Gong J, Liu W, Zhang J, et al. lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse[J].Nucleic Acids Research, 2015, 43(Database issue): D181-186. [47] Ding J, Lu Q, Ouyang Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659. [48] Denman RB. Using RNAFOLD to predict the activity of small catalytic RNAs[J].BioTechniques, 1993, 15(6): 1090-1095. [49] Andronescu M, Aguirre-Hernandez R, Condon A, et al. RNAsoft: A suite of RNA secondary structure prediction and design software tools[J].Nucleic Acids Research, 2003, 31(13): 3416-3422. [50] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction[J].Nucleic Acids Research, 2003, 31(13): 3406-3415. [51] Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression[J].Genes & Development, 2004, 18(5): 504-511. [52] Barenboim M, Zoltick BJ, Guo Y, et al. MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets[J].Human Mutation, 2010, 31(11): 1223-1232. [53] Sabarinathan R, Tafer H, Seemann SE, et al. The RNAsnp web server: predicting SNP effects on local RNA secondary structure[J].Nucleic Acids Research, 2013, 41(Web Server issue): W475-479. [54] Bruno AE, Li L, Kalabus JL, et al. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes[J].BMC Genomics, 2012, 13: 44. [55] Liu C, Zhang F, Li T, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs[J].BMC Genomics, 2012, 13: 661. [56] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J].Cell, 2005, 120(1): 15-20. [57] Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows[J].Nucleic Acids Research, 2013, 41(Web Server issue): W169-173. [58] Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions[J].Nature Genetics, 2005, 37(5): 495-500. [59] Rusinov V, Baev V, Minkov IN, et al. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence[J].Nucleic Acids Research, 2005, 33(Web Server issue): W696-700. [60] Gong J, Wu Y, Zhang X, et al. Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing[J].RNA Biology, 2014, 11(11): 1375-1385. [61] Jin G, Sun J, Isaacs SD, et al. Human polymorphisms at long non-coding RNAs(lncRNAs)and association with prostate cancer risk[J].Carcinogenesis, 2011, 32(11): 1655-1659. [62] Ning S, Zhao Z, Ye J, et al. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs[J].BMC Bioinformatics, 2014, 15: 152. |
[1] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[2] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[3] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[4] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[5] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[6] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[7] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[8] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[9] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[10] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[11] | 杨敏, 龙雨青, 曾娟, 曾梅, 周新茹, 王玲, 付学森, 周日宝, 刘湘丹. 灰毡毛忍冬UGTPg17、UGTPg36基因克隆及功能研究[J]. 生物技术通报, 2023, 39(10): 256-267. |
[12] | 李建建, 贺宸靖, 黄小平, 向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(1): 48-58. |
[13] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[14] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
[15] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 440
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||