生物技术通报 ›› 2015, Vol. 31 ›› Issue (4): 47-55.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.013
姜超强,祖朝龙
收稿日期:
2014-12-01
出版日期:
2015-04-22
发布日期:
2015-04-22
作者简介:
姜超强,男,博士,研究方向:作物营养及逆境生理;E-mail:chaoqjiang@163.com
基金资助:
Jiang Chaoqiang Zu Chaolong
Received:
2014-12-01
Published:
2015-04-22
Online:
2015-04-22
摘要: 褪黑素广泛存在于植物体内,对植物生长和发育方面有着重要的作用。其中,最为人们关注的是褪黑素在植物抵御干旱、高盐、极端温度和氧化胁迫等不良影响中所发挥的重要功能。随着人们对褪黑素研究的深入,褪黑素在植物体中发挥的作用和功能也更加明确,国内外在褪黑素与植物抗逆性关系的研究也取得了丰硕的成果。主要从植物体中褪黑素的合成途径、褪黑素在植物抗性反应中的作用以及内源褪黑素含量与逆境等方面进行了综述,并提出今后的研究方向。可以归纳为:植物体内褪黑素的合成机制与动物体内相似,但是确切的生物合成途径和具体的合成位点尚未明确;外源褪黑素处理能够增强植物抵御逆境的能力;逆境胁迫能够促进植物自身合成褪黑素,过表达褪黑素合成相关基因能够增加植物体内褪黑素的含量。
姜超强,祖朝龙. 褪黑素与植物抗逆性研究进展[J]. 生物技术通报, 2015, 31(4): 47-55.
Jiang Chaoqiang, Zu Chaolong. Advances in Melatonin and Its Roles in Abiotic Stress Resistance in Plants[J]. Biotechnology Bulletin, 2015, 31(4): 47-55.
[1]Kolá? J, Machá?ková I. Melatonin in higher plants:occurrence and possible functions[J]. Journal of Pineal Research, 2005, 39:333-341. [2]Tan DX, Manchester LC, DiMascio P, et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth:importance for phytoremediation[J]. The FASEB Journal, 2007, 21(8):1724-1729. [3]Tan DX, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution:from an antioxidant to signals of darkness, sexual selection and fitness[J]. Biological Reviews, 2010, 85(3):607-623. [4]Dubbels R, Reiter RJ, Klenke E. , et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry[J]. Journal of Pineal Research, 1995, 18(1):28-31. [5]Tan DX, Hardeland R, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science[J]. Journal of Experimental Botany, 2012, 63(2):577-597. [6]Janas KM, Posmyk MM. Melatonin, an underestimated natural substance with great potential for agricultural application[J]. Acta Physiologiae Plantarum, 2013, 35(12):3285-3292. [7]Lerner AB, Case J, Takahashi Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes[J]. Journal of the American Chemical Society, 1958, 80(10):2587-2587. [8]Okazaki M, Ezura H. Profiling of melatonin in the model tomato(Solanum lycopersicum L. )[J]. Journal of Pineal Research, 2009, 46:338-343. [9]Sae-Teaw M, Johns J, Johns NP, et al. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers[J]. Journal of Pineal Research, 2013, 55:58-64. [10]Reiter RJ. Pineal melatonin:cell biology of its synthesis and of its physiological interactions[J]. Endocrine Reviews, 1991, 12(2):151-180. [11]Murch SJ, KrishnaRaj S, Saxena P. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort(Hypericum perforatum L. cv. Anthos)plants[J]. Plant Cell Reports, 2000, 19(7), 698-704. [12]Murch SJ, Campbell SSB, Saxena PK. The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s wort(Hypericum perforatum L. )[J]. In Vitro Cellular and Developmental Biology-Plant, 2001, 37(6):786-793. [13]Kang K, Kong K, Park S, et al. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice[J]. Journal of Pineal Research, 2011, 50(3):304-309. [14]Tan DX, Manchester LC, Liu XY, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis:a hypothesis related to melatonin’s primary function and evolution in eukaryotes[J]. Journal of Pineal Research, 2013, 54, 127-138. [15]Arnao MB, Hernández-Ruiz J. The physiological function of melatonin in plants[J]. Plant Signaling and Behavior, 2006, 1(3):89-95. [16]Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53:247-273. [17]Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple[J]. Journal of Pineal Research, 2013, 54:292-302. [18]Zhang N, Zhao B, Zhang HJ, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber(Cucumis sativus L. )[J]. Journal of Pineal Research, 2013, 54:15-23. [19]Wei W, Li QT, Chu YN, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J]. Journal of Experimental Botany, 2014. doi:10. 1093/jxb/eru392 [20]Shi H, Jiang C, Ye T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass[Cynodon dactylon(L). Pers.] by exogenous melatonin[J]. Journal of Experimental Botany, 2014. doi:10. 1093/jxb/eru373 [21]Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant Cell and Environment, 2002, 25:131-139. [22]Kar RK. Plant responses to water stress:role of reactive oxygen species[J]. Plant Signaling & Behavior, 2011, 6:1741-1745. [23] Roldán A, DíazVivancos P, Hernández JA, et al. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil[J]. Journal of Plant Physiology, 2008, 165:715-722. [24] Reiter RJ, Tan DX, Terron MP, et al. Melatonin and its metabolites:new findings regarding their production and their radical scavenging actions[J]. Acta Biochim Pol, 2007, 54:1-9. [25] Reiter RJ. Oxidative damage in the central nervous system:protection by melatonin[J]. Progress in Neurobiology, 1998, 56:359-384. [26] Tan DX, Manchester LC, Reiter RJ, et al. Melatonin directly scavenges hydrogen peroxide:a potentially new metabolic pathway of melatonin biotransformation[J]. Free Radical Biology and Medicine, 2000, 29:1177-1185. [27] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59:651-681. [28] Flowers TJ. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396):307-319. [29] Li C, Wang P, Wei Z, et al. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis[J]. Journal of Pineal Research, 2012, 53(3):298-306. [30] Lin YH, Pan KY, Hung CH, et al. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii[J]. International Journal of Molecular Sciences, 2013, 14:20913-20929. [31] Zhang HJ, Zhang N, Yang RC, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber(Cucumis sativus L. )[J]. Journal of Pineal Research, 2014. doi:10. 1111/jpi. 12167 [32] Jiang X, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance?[J]. Plant Signaling & Behavior, 2010, 5(7):792-795. [33]Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285:1256-1258. [34]Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19:765-768. [35]Jiang CQ, Zheng QS, Liu ZP, et al. Seawater-irrigation effects on growth, ion concentration, and photosynthesis of transgenic poplar overexpressing the Na+/H+ antiporter AtNHX1[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(2):301-310. [36]Jiang CQ, Zheng QS, Liu ZP, et al. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar(Populus×euramericana ‘Neva’)[J]. Trees, 2012, 26:685-694. [37]Bajwa VS, Shukla MR, Sherif SM, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana[J]. Journal of Pineal Research, 2014, 56(3):238-245 [38]Ruelland E, Zachowski A. How plants sense temperature[J]. Environmental and Experimental Botany, 2010, 69:225-32. [39]Chen TH, Murata N. Glycinbetaine:an effective protectant against abiotic stress in plants[J]. Trends in Plant Science, 2008, 13:499-505. [40]Xu XX, Shao HB, Chu LY, et al. Biotechnological implications from abscisic acid(ABA)roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions[J]. Critical Reviews in Biotechnology, 2010, 30(3):222-230. [41]Shi HT, Ye TT, Zhong B, et al. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass(Cynodon dactylon(L. )Pers. )by exogenous calcium[J]. Journal of Integrative Plant Biology, 2014, 56(11):1064-1079. [42]Tan DX, Manchester LC, Reiter RJ, et al. Significance of melatonin in antioxidative defense system:Reactions and products[J]. Biological Signals and Receptors, 2000, 9(3-4):137-159. [43]Lei XY, Zhu RY, Dai YR, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells:The possible involvement of polyamines[J]. Journal of Pineal Research, 2004, 36(2):126-131. [44]张贵友, 李萍, 戴尧仁. 低温胁迫下褪黑激素对烟 草悬浮细胞精氨酸脱羧酶活性的影响[J]. 植物学通报, 2005, 22(5):555-559. [45]Watson MB, Malmberg RL. Regulation of Arabidopsis thaliana(L. )heynh arginine decarboxylase by potassium deficiency stress[J]. Plant Physiology, 1996, 111(4):1077-1083 [46]Posmyk MM, Balabusta M, Wieczorek M, et al. Melatonin applied to cucumber(Cucumis sativus L. )seeds improves germination during chilling stress[J]. Journal of Pineal Research, 2009, 46(2):214-223. [47]Zhao Y, Qi L, Wang W, et al. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata[J]. Journal of Pineal Research, 2011, 50:83-88. [48]Steponkus PL, Uemura M, Joseph RA, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1998, 95:14570-14575. [49]Lobell DB, Asner GP. Climate and management contributions to recent trends in U. S. agricultural yields[J]. Science, 2003, 299:1032. [50]Lobell DB, Sibley A, Ortiz-Monasterio JI. Extreme heat effects on wheat senescence in India[J]. Nature Climate Change, 2012, 2(3):186-189. [51]Larkindale J, Huang BR. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of Plant Physiology, 2004, 161(4):405-413. [52]Larkindale J, Huang BR. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for Creeping Bentgrass[J]. Plant Growth Regulation, 2005, 47(1):17-28. [53]Tal O, Haim A, Harel O, et al. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp.[J]. Journal of Experimental Botany, 2011, 62:1903-1910. [54]Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin[J]. Journal of Pineal Research, 2012, 52(3):332-339. [55]Byeon Y, Back KW. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities[J]. Journal of Pineal Research, 2013, 56:189-195. [56]徐向东, 孙艳, 郭晓芹, 等. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响[J]. 应用生态学报, 2010, 21(10):2580-2586 [57]徐向东, 孙艳, 孙波, 等. 高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响[J]. 应用生态学报, 2010, 21(5):1295-1300. [58]Demmig AD, Ams B, Adams WW. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43:599-626. [59]Pieri C, Marra M, Moroni F, et al. Melatonin:A peroxyl radical scavenger more effective than vitamin E[J]. Life Sciences, 1994, 55:271-276. [60]Posmyk MM, Kuran H, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations[J]. Journal of Pineal Research, 2008, 45(1):24-31. [61]Hall J. Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53:1-11. [62]Schützendübel A, Polle Andrea. Plant responses to abiotic stresses:heavy metalinduced oxidative stress and protection by mycorrhization[J]. Journal of Experimental Botany, 2002, 53:1351-1365. [63]Yadav SK. Heavy metals toxicity in plants:An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants[J]. South African Journal of Botany, 2010, 76:167-179. [64]Moffat AS. Plants proving their worth in toxic metal cleanup[J]. Science, 1995, 269:302-303. [65]Limson J, Nyokong T, Daya S. The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc:an adsorptive voltammetric study[J]. Journal of Pineal Research, 1998, 24, 15-21. [66]Tan DX, Manchester LC, Reiter RJ, et al. Phytoremediative capacity of plants enriched with melatonin[J]. Plant Signaling and Behavior, 2007, (6):514-516. [67]Agunbiade FO, Olu-Owolabi BI, Adebowale KO. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water[J]. Bioresource Technology, 2009, 100(19):4521-4526. [68]王英利, 王英娟, 郝建国, 等. 褪黑素对绿豆在增强UV-B辐射下的防护作用[J]. 光子学报, 2009, 38:2629-2633. [69]Hardeland R. New actions of melatonin and their relevance to biometeorology[J]. International Journal of Biometeorology, 1997, 41(2):47-57. [70]Lazár D, Murch SJ, Beilby MJ, et al. Exogenous melatonin affects photosynthesis in characeae Chara australi[J]. Plant Signaling & Behavior, 2013, 8(3):e23279 doi:10. 4161/psb. 23279 [71]Afreen F, Zobayed SMA, Kozai T. Melatonin in Glycyrrhiza uralensis:response of plant roots to spectral quality of light and UV-B radiation[J]. Journal of Pineal Research, 2006, 41(2):108-115. [72]Zhang LJ, Jia JF, Xu Y, et al. Production of transgenic Nicotiana sylvestris plants expressing melatonin synthetase genes and their effect on UV-B-induced DNA damage[J]. In Vitro Cellular & Developmental Biology-Plant, 2012, 48:275-282. [73]Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochemistry and Molecular Biology International, 1995, 35(3):627-634. [74]Manchester LC, Tan DX, Reiter RJ. High levels of melatonin in the seeds of edible plants:possible function in germ tissue protection[J]. Life Sciences, 2000, (67):3023-3029. [75]Riga P, Medina S, Garcia-Flores LA, et al. Melatonin content of pepper and tomato fruits:effects of cultivar and solar radiation[J]. Food Chemistry, 2014, 156:347-352. [76]Murch SJ, Alan AR, Cao J, et al. Melatonin and serotonin in flowers and fruits of Datura metel L[J]. Journal of Pineal Research, 2009, 47:277-283. [77]Arnao MB, Hernández-Ruiz J. Chemical stress by different agents affects the melatonin content of barley roots[J]. Journal of Pineal Research, 2009, 46(3):295-299. |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[4] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[5] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[6] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[7] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[8] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[9] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[10] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[11] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[12] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
[13] | 杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展[J]. 生物技术通报, 2021, 37(4): 194-203. |
[14] | 马旭辉, 陈茹梅, 柳小庆, 赵军, 张霞. 褪黑素对玉米幼苗根系发育和抗旱性的影响[J]. 生物技术通报, 2021, 37(2): 1-14. |
[15] | 许涛, 夏冬健, 万菁, 姜书涵, 宋江华. F-box蛋白参与植物逆境胁迫研究进展[J]. 生物技术通报, 2021, 37(12): 205-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||