[1]Cahoon EB, Shockey JM, Dietrich CR, et al. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks:solving bottlenecks in fatty acid flux[J]. Curr Opin Plant Biol, 2007, 10(3):236-244. [2]丁勇, 徐春雷, 甘莉. 植物油体及其相关蛋白的研究进展[J]. 华中农业大学学报, 2008, 27(4):558-563. [3]Bates PD, Durrett TP, Ohlrogge JB, et al. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos[J]. Plant Physiology, 2009, 150(1):55-72. [4]O'Hara P, Slabas AR, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis[J]. Plant Physiology, 2002, 129(1):310-320. [5]Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. The Plant Cell, 2002, 14(6):1191-1206. [6]Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis[J]. Plant Physiol Biochem, 2009, 47(6):448-455. [7]丁霄, 杨淑巧, 许琦, 等. 转录因子WRI1在主要作物中的研究进展[J]. 分子植物育种, 2015, 13(3):697-701. [8]Focks N, Benning C. Wrinkled1:a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiol, 1998, 118(1):91-101. [9]Lonien J, Schwender J. Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis[J]. Plant Physiology, 2009, 151(3):1617-1634. [10]Wang TL, Hedley CL. Seed development in peas:knowing your three r's’(or four, or five)[J]. Seed Science Research, 1991, 1(1):3-14. [11]He YQ, Wu Y. Oil body biogenesis during Brassica napus embryogenesis[J]. J Integr Plant Biol, 2009, 51(8):792-799. [12]Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. Plant J, 2004, 40(4):575-585. [13]Shigyo M, Hasebe M, Ito M. Molecular evolution of the AP2 subfamily[J]. Gene, 2006, 366(2):256-265. [14]Ma W, Kong Q, Arondel V, et al. Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp[J]. PLoS One, 2013, 8(7):e68887. [15]Baud S, Wuilleme S, Dubreucq B, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana[J]. The Plant Journal, 2007, 52(3):405-419. [16]Baud S, Mendoza MS, To A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant J, 2007, 50(5):825-838. [17]Broun P. Transcription factors as tools for metabolic engineering in plants[J]. Curr Opin plant Biol, 2004, 7(2):202-209. [18]Baud S, Graham IA. A spatiotemporal analysis of enzymatic activities associated with carbon metabolism in wild-type and mutant embryos of Arabidopsis usingin situhistochemistry[J]. The Plant Journal, 2006, 46(1):155-169. [19]Maeo K, Tokuda T, Ayame A, et al. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes inv-olved in fatty acid synthesis[J]. The Plant Journal, 2009, 60(3):476-487. [20]Chen YM, Ferrar TS, Lohmeir-Vogel E, et al. The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase[J]. Journal of Biological Chemistry, 2006, 281(9):5726-5733. [21]Hsieh MH, Lam HM, Van De Loo FJ, et al. A PII-like protein in Arabidopsis:putative role in nitrogen sensing[J]. Proc Natl Acad Sci USA, 1998, 95(23):11397-13965. [22]To A, Joubès J, Barthole G, et al. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis[J]. Plant Cell, 2012, 24(12):5007-5023. [23]Baud S, Wuillème S, To A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J]. The Plant Journal, 2009, 60(6):933-947. [24]Tabach Y, Brosh R, Buganim Y, et al. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site[J]. PLoS One, 2007, 2(8):e807. [25]Fukuda N, Ikawa Y, Aoyagi T, et al. Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site[J]. Plant Molecular Biology, 2013, 82(4-5):473-483. [26]Masaki T, Mitsui N, Tsukagoshi H, et al. Activator of spomin::LUC1/WRINKLED1 of Arabidopsis thaliana transactivates sugar-inducible promoters[J]. Plant and Cell Physiology, 2005, 46(4):547-556. [27]Tranbarger TJ, Dussert S, Jo?t T, et al. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism[J]. Plant Physiol, 2011, 156(2):564-584. [28]Century K, Reuber TL, Ratcliffe OJ. Regulating the regulators:the future prospects for transcription-factor- based agricultural biotechnology products[J]. Plant Physiol, 2008, 147(1):20-29. [29]Kim HU, Lee KR, Jung SJ, et al. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth[J]. Plant Biotechnology Journal, 2015, 13(9):1346-1359. [30]Kim HU, Jung SJ, Lee KR, et al. Ectopic overexpression of castor bean LEAFY COTYLEDON2(LEC2)in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues[J]. FEBS Open Bio, 2013, 4:25-32. [31]Mendoza MS, Dubreucq B, Miquel M, et al. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves[J]. FEBS LETT, 2005, 579(21):4666-4670. [32]Mu J, Tan H, Zheng Q, et al. Leafy COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiol, 2008, 148(2):1042-1054. [33]Seo PJ, Kim MJ, Ryu JY, et al. Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism[J]. Nature Communications, 2011, 2:303. [34]Volfovsky N, Haas BJ, Salzberg SL. Computational discovery of internal micro-exons[J]. Genome Research, 2003, 13(6a):1216-1221. [35]Verjovski-Almeida S, DeMarco R. Gene structure and splicing in schistosomes[J]. Journal of Proteomics, 2011, 74(9):1515-1518. [36]Zhang LY, Bai MY, Wu J, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J]. The Plant Cell, 2009, 21(12):3767-3780. [37]Weber H, Bernhardt A, Dieterle M, et al. Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family[J]. Plant Physiology, 2005, 137(1):83-93. [38]Hua Z, Vierstra RD. The cullin-RING ubiquitin-protein ligases[J]. Annual Review of Plant Biology, 2011, 62:299-334. [39]Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 2013, 16(3):358-364. [40]Liu J, Hua W, Zhan GM, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry, 2010, 48(1):9-15. [41]An D, Suh MC. Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa[J]. Plant Biotechnology Reports, 2015, 9(3):137-148. [42]Baud S, Feria Bourrellier AB, Azzopardi M, et al. PII is induced by WRINKLED1 and fine-tunes fatty acid composition in seeds of Arabidopsis thaliana[J]. Plant J, 2010, 64(2):291-303. |