[1] Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705):1315-1317. [2] Santich BH, Liu H, Liu C, et al. Generation of TCR-like antibodies using phage display[J]. Methods Mol Biol, 2015, 1348:191-204. [3] Shusta, EV, VanAntwerp, J, Wittrup KD. Biosynthetic polypeptide libraries[J]. Curr Opin Biotechnol, 1999, 10(2):117-122. [4] Van Deventer JA, Yuet KP, Yoo TH, et al. Cell surface display yields evolvable, clickable antibody fragments[J]. Chembiochem, 2014, 15(12):1777-1781. [5] Soga K, Abo H, Qin SY, et al. Mammalian cell surface display as a novel method for developing engineered lectins with novel characteristics[J]. Biomolecules, 2015, 5(3):1540-1562. [6] Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display[J]. Proc Natl Acad Sci, USA, 1997, 94(10):4937-4942. [7] He M, Taussig MJ. ARM complexes as efficient selection particles for in vitro display and evolution of antibody combining sites[J]. Nucleic Acids Res, 1997, 25:5132-5134. [8] Chen L, Kutskova YA, Hong F, et al. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display[J]. Protein Eng Des Sel, 2015, 28(10):427-435. [9] Tokunaga M, Shiheido H, Hayakawa I, et al. Hereditary spastic paraplegia protein spartin is an FK506-binding protein identified by mRNA display[J]. Chem Biol, 2013, 20(7):935-942. [10] Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries[J]. Proc Natl Acad Sci USA, 1994, 91(19):9022-9026. [11] Taussig MJ, Groves MAT, Menges M, et al. ARM complexes for in vitro display and evolution of antibody combining sites[M]//Monoclonal Antibodies:A Practical Approach. In Shepherd P, Dean C Eds. Oxford:Oxford University Press, 2000:91-109. [12] Irving RA, Coia G, Roberts A, et al. Ribosome display and affinity maturation:from antibodies to single V-domains and steps towards cancer therapeutics[J]. J Immunol Methods, 2001, 248:31-45. [13] He M, Taussig MJ. Ribosome display:Cell-free protein display technology[J]. Brief Funct Genomic Proteomic, 2002, 1(2):204-212. [14] Ellman J, Mendel D, Anthony-Cahill S, et al. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins[J]. Methods Enzymol, 1991, 202:301-336. [15] Kanamori T, Fujino Y, Ueda T. PURE ribosome display and its application in antibody technology[J]. Biochimica et Biophysica Acta, 2014, 1844:1925-1932. [16] Griffiths AD, Tawfik DS. Man-made enzymes—from design to in vitro compartmentalization[J]. Cur Opin Biotech, 2000, 11(4):338-353. [17] Levy M, Ellington AD. Directed evolution of streptavidin variants using in vitro compartmentalization[J]. Chemi Biol, 2008, 15(9):979-989. [18] Tay Y, Ho C, Droge P, et al. Selection of bacteriophage lambda integrases with altered recombination specificity by in vitro compartmentalization[J]. Nucleic Acids Res, 2010, 38(4):e25. [19] Ogawa A, Hayami M, Sando S, et al. A concept for selection of codon-suppressor tRNAs based on read-through ribosome display in an in vitro compartmentalized cell-free translation system[J]. J Nucleic Acids, 2012, 2012:538129. [20] Chin SE, Ferraro F, Groves M, et al. Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses[J]. J Immunol Methods, 2015, 416:49-58. [21] Zhao L, Ning BA, Bai JL, et al. Selection of bisphenol A-single-chain antibodies from a non-immunized mouse library by ribosome display[J]. Analytical Biochemistry, 2015, 488:59-64. [22] Luo YH, Xia YX. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display[J]. Anal Biochem, 2012, 421:130-137. [23] Chen F, Zhao Y, Liu M, et al. Functional selection of hepatitis C virus envelope E2-binding peptide ligands by using ribosome display[J]. Antimicrob Agents Chemother, 2010, 54(8):3355-3364. [24] Zhao XL, Chen WQ, Yang ZH, et al. Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display[J]. J Biotech, 2009, 144:253-258. [25] Zhou L, Mao WP, Fen JA, et al. Selection of scFvs specific for the HepG2 cell line using ribosome display[J]. J Biosci, 2009, 34 (2):221-226. [26] Sun YN, Ning BA, Liu M, et al. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library[J]. PLoS One, 2012, 7(3):e33186. [27] Qi YH, Wu CM, Zhang SX, et al. Selection of anti-sulfadimidine specific ScFvs from a hybridoma cell by eukaryotic ribosome display[J]. PLoS One, 2009, 4(7):e6427. [28] Cheng HW, Chen YF, Yang Y, et al. Characterization of anti-citrinin specific ScFvs selected from non-immunized mouse splenocytes by eukaryotic ribosome display[J]. PLoS One, 2015, 10(7):e0131482. [29] Skirgaila R, Pudzaitis V, Paliksa S, et al. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display:a novel tool for the directed evolution of enzymes[J]. Protein Eng Des Sel, 2013, 26(7):453-461. [30] Whaley SR, English DS, Hu EL, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly[J]. Nature, 2000, 405:665-668. [31] Ejima H, Matsumiya K, Sawada T, et al. Conjugated polymer nanoparticles hybridized with the peptide aptamer[J]. Chem Commun, 2011, 47:7707-7709. [32] Li Z, Uzawa T, Zhao H, et al. In vitro selection of peptide aptamers using a ribosome display for a conducting polymer[J]. J Biosci Bioeng, 2014, 117(4):501-503. [33] Li Z, Uzawa T, Tanaka T, et al. In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome dis-play[J]. Biotechnol Lett, 2013, 35:39-45. |