生物技术通报 ›› 2017, Vol. 33 ›› Issue (6): 69-80.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0012
付晨熙, 肖自华, 高飞, 周宜君
收稿日期:
2017-01-16
出版日期:
2017-06-26
发布日期:
2017-06-19
作者简介:
付晨熙,女,博士,研究方向:植物抗逆分子生物学;E-mail:fcx0214@muc.edu.cn
基金资助:
FU Chen-xi, XIAO Zi-hua, GAO Fei, ZHOU Yi-jun
Received:
2017-01-16
Published:
2017-06-26
Online:
2017-06-19
摘要: 通过对蒙古沙冬青[Ammopiptanthus mongolicus(Maxim)Cheng. f]叶组织干旱胁迫下蛋白质组变化的研究,从蛋白表达水平阐释其应答干旱胁迫的分子机制。以20% PEG 6000胁迫处理1 h和72 h,以0 h为对照,提取叶片总蛋白,利用双向电泳和质谱鉴定技术分析差异表达蛋白。共鉴定了40个差异表达蛋白,按功能可分为9类:光合作用,ROS清除,蛋白的合成、加工与降解,物质运输,防御相关,RNA加工,氨基酸代谢,其他相关蛋白和功能未知蛋白质。蒙古沙冬青叶片应答干旱胁迫的核心是叶绿体结构和光合作用的维持。
付晨熙, 肖自华, 高飞, 周宜君. 干旱胁迫下蒙古沙冬青叶片蛋白质组学研究[J]. 生物技术通报, 2017, 33(6): 69-80.
FU Chen-xi, XIAO Zi-hua, GAO Fei, ZHOU Yi-jun. Proteomics Analysis of Ammopiptanthus mongolicus Leaves Under Drought Stress[J]. Biotechnology Bulletin, 2017, 33(6): 69-80.
[1] Gray SB, Brady SM. Plant developmental responses to climate change[J]. Developmental Biology, 2016, 419(1):64-77. [2] Basu S, Ramegowda V, Kumar A, et al. Plant adaptation to drought stress[J]. F1000Research, 2016, 5:1554. [3] Bray EA. Plant responses to water deficit[J]. Trends in Plant Science, 1997, 2(2):48-54. [4] Khan MS, Khan MA, Ahmad D. Assessing utilization and environmental risks of important genes in plant abiotic stress tolerance[J]. Frontiers in Plant Science, 2016, 7:792. [5] Debnath M, Pandey M, Bisen PS. An omics approach to understand the plant abiotic stress[J]. Omics:a Journal Of Integrative Biology, 2011, 15(11):739-762. [6] Wang X, Cai X, Xu C, et al. Drought-responsive mechanisms in plant leaves revealed by proteomics[J]. International Journal of Molecular Sciences, 2016, 17(10):pii:E1706. [7] 刘果厚. 阿拉善荒漠特有植物沙冬青濒危原因的研究[J]. 植物研究, 1998, 18(3):341-345. [8] 周宜君, 高飞, 冯金朝, 等. 民族地区沙冬青种质资源保护与利用[J]. 安徽农业科学, 2011, 39(10):5851-5853. [9] Gao F, Wang J, Wei S, et al. Transcriptomic analysis of drought stress responses in Ammopiptanthus mongolicus leaves using the RNA-Seq technique[J]. PLoS One, 2015, 10(4):e0124382. [10] Wu Y, Wei W, Pang X, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses[J]. BMC Genomics, 2014, 15(1):1-16. [11] 郭婷, 王茅雁, 董博, 等. 蒙古沙冬青AmDREB2C基因的克隆及表达分析[J]. 植物遗传资源学报, 2015, 16(2):344-348. [12] 李章磊, 高飞, 曹玉震, 等. 蒙古沙冬青AmDREB2. 1基因的克隆及表达分析[J]. 生物技术通报, 2015(3):108-114. [13] Gao F, Wang N, Li H, et al. Identification of drought-responsive microRNAs and their targets in Ammopiptanthus mongolicus by using high-throughput sequencing[J]. Scientific Reports, 2016, 6:34601. [14] 刘楠, 高飞, 周宜君, 等. 蒙古沙冬青根蛋白的提取及双向电泳体系的建立[J]. 北京师范大学学报:自然科学版, 2013, 49(4):365-368. [15] Mathesius U, Keijzers G, Natera SHA, et al. Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting[J]. Proteomics, 2001, 1(11):1424-1440. [16] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254. [17] Rabilloud T. Silver staining of 2D electrophoresis gels[J]. Quantitative Methods in Proteomics, 2012, 893:61-73. [18] Du Z, Zhou X, Ling Y, et al. agriGO:a GO analysis toolkit for the agricultural community[J]. Nucleic Acids Research, 2010, 38:W64-W70. [19] Xie C, Mao X, Huang J, et al. KOBAS 2. 0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39:W316-W322. [20] Bevan M, Bancroft I, Bent E, et al. Analysis of 1. 9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391(6666):485-488. [21] Zhao Q, Gao J, Suo J, et al. Cytological and proteomic analyses of horsetail(Equisetum arvense L. )spore germination[J]. Frontiers in Plant Science, 2015, 6:441. [22] Briesemeister S, Rahnenführer J, Kohlbacher O. YLoc-an interpre-table web server for predicting subcellular localization[J]. Nucleic Acids Research, 2010, 38:W497-W502. [23] Briesemeister S, Rahnenführer J, Kohlbacher O. Going from where to why-interpretable prediction of protein subcellular localization[J]. Bioinformatics, 2010, 26(9):1232-1238. [24] Goldberg T, Hecht M, Hamp T, et al. LocTree3 prediction of localization[J]. Nucleic acids research, 2014, 42(W1):W350-W355. [25] Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6):e11335. [26] King BR, Guda C. ngLOC:an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes[J]. Genome Biology, 2007, 8(5):1. [27] Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of Molecular Biology, 2000, 300(4):1005-1016. [28] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:protein-protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Research, 2014, 43:D447-D452. [29] Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2. 8:new features for data integration and network visualization[J]. Bioinformatics, 2011, 27(3):431-432. [30] Bohler S, Sergeant K, Jolivet Y, et al. A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought[J]. Proteomics, 2013, 13(10-11):1737-1754. [31] Wang Y, Yang L, Chen X, et al. Major latex protein-like protein 43(MLP43)functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2015, 67(1):421-434. [32] Shu L, Lou Q, Ma C, et al. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought[J]. Proteomics, 2011, 11(21):4122-4138. [33] Zhang S, Chen F, Peng S, et al. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress[J]. Proteomics, 2010, 10(14):2661-2677. [34] Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation[J]. Journal of Biological Chemistry, 2013, 288(40):29056-29068. [35] Bricker T M, Frankel LK. Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II:a critical analysis[J]. Journal of Photochemistry and Photobiology B:Biology, 2011, 104(1):165-178. [36] Wilde A, Lünser K, Ossenbühl F, et al. Characterization of the cyanobacterial ycf37:mutation decreases the photosystem I content[J]. Biochemical Journal, 2001, 357(1):211-216. [37] Demirevska K, Zasheva D, Dimitrov R, et al. Drought stress effects on Rubisco in wheat:changes in the Rubisco large subunit[J]. Acta Physiologiae Plantarum, 2009, 31(6):1129-1138. [38] Ebrahimzadeh H. Drought stress increases the expression of wheat leaf ribulose-1, 5-bisphosphate carboxylase/oxyenase protein[J]. Iranian Journal of Science and Technology(Sciences), 2006, 30(1):1-7. [39] Zadražnik T, Hollung K, Egge-Jacobsen W, et al. Differential proteomic analysis of drought stress response in leaves of common bean(Phaseolus vulgaris L. )[J]. Journal of Proteomics, 2012, 78(1):254-272. [40] Zaffagnini M, Michelet L, Sciabolini C, et al. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii[J]. Molecular Plant, 2014, 7(1):101-120. [41] Budak H, Akpinar B A, Unver T, et al. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS[J]. Plant Molecular Biology, 2013, 83(1):89-103. [42] Durand T C, Sergeant K, Renaut J, et al. Poplar under drought:comparison of leaf and cambial proteomic responses[J]. Journal of Proteomics, 2011, 74(8):1396-1410. [43] Ye T, Shi H, Wang Y, et al. Contrasting changes caused by drought and submergence stresses in bermudagrass(Cynodon dactylon)[J]. Frontiers in Plant Science, 2015, 6:951. [44] Yamauchi Y, Hasegawa A, Mizutani M, et al. Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress[J]. FEBS Letters, 2012, 586(8):1208-1213. [45] Schürmann P, Jacquot JP. Plant thioredoxin systems revisited[J]. Annual Review of Plant Biology, 2000, 51(1):371-400. [46] Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics, 2005, 5(4):950-960. [47] Tugal HB, Pool M, Baker A. Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization[J]. Plant Physiology, 1999, 120(1):309-320. [48] Ashoub A, Beckhaus T, Berberich T, et al. Comparative analysis of barley leaf proteome as affected by drought stress[J]. Planta, 2013, 237(3):771-781. [49] Jiang Q, Mei J, Gong XD, et al. Importance of the rice TCD9 encoding α subunit of chaperonin protein 60(Cpn60α)for the chloroplast development during the early leaf stage[J]. Plant Science, 2014, 215-216:172-179. [50] Dickson R, Weiss C, Howard RJ, et al. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding[J]. Journal of Biological Chemistry, 2000, 275(16):11829-11835. [51] Hennessy F, Nicoll W S, Zimmermann R, et al. Not all J domains are created equal:implications for the specificity of Hsp40-Hsp70 interactions[J]. Protein Science, 2005, 14(7):1697-1709. [52] Weisman R, Creanor J, Fantes P. A multicopy suppressor of a cell cycle defect in S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein[J]. Embo Journal, 1996, 15(3):447-456. [53] Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress[J]. Mol Cell Proteomics 2007, 6:1868-1884. [54] Akashi K, Yoshida K, Kuwano M, et al. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus(wild watermelon), in response to water deficit[J]. Planta, 2011, 233(5):947-960. [55] 王彦杰, 张超, 王晓庆, 等. 牡丹泛素延伸蛋白基因片段克隆与表达分析[J]. 扬州大学学报:农业与生命科学版, 2013(1):79-83. [56] Wan X, Mo A, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. Journal of Bioscience and Bioengineering, 2011, 111(4):478-484. [57] Heidarvand L, Maaliamiri R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress[J]. Journal of Plant Physiology, 2013, 170(5):459-469. [58] Krojer T, Sawa J, Schäfer E, et al. Structural basis for the regulated protease and chaperone function of DegP[J]. Nature, 2008, 453(7197):885-890. [59] Haußühl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II[J]. The EMBO Journal, 2001, 20(4):713-722. [60] Lee U, Rioflorido I, Hong SW, et al. The Arabidopsis ClpB/Hsp100 family of proteins:chaperones for stress and chloroplast development[J]. The Plant Journal, 2007, 49(1):115-127. [61] Wu D, Shen Q, Qiu L, et al. Identification of proteins associated with ion homeostasis and salt tolerance in barley[J]. Proteomics, 2014, 14(11):1381-1392. [62] Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013, 12(11):4931-4950. [63] Lee K, Kang H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses[J]. Molecules & Cells, 2016, 39(3):179-185. |
[1] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[4] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[5] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
[6] | 李兵娟, 郑璐, 沈仁芳, 兰平. 拟南芥RPP1A参与幼苗生长的蛋白质组学分析[J]. 生物技术通报, 2022, 38(2): 10-20. |
[7] | 王智博, 王道平, 苗兰, 李瑛, 潘映红, 刘建勋. 血液样本蛋白质组分析方法的比较研究[J]. 生物技术通报, 2021, 37(8): 307-318. |
[8] | 李俊林, 张焕朝, 聂文婧, 张海洋, 王向誉, 郭洪恩, 韩蕾. 蒙古沙冬青外向钾离子通道AmGORK启动子克隆及表达分析[J]. 生物技术通报, 2021, 37(10): 9-16. |
[9] | 刘静, 李亚超, 周梦岩, 吴鹏飞, 马祥庆, 李明. 植物蛋白质翻译后修饰组学研究进展[J]. 生物技术通报, 2021, 37(1): 67-76. |
[10] | 郑璐, 沈仁芳, 兰平. 植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展[J]. 生物技术通报, 2021, 37(1): 77-89. |
[11] | 孟丽娜, 彭春莹, 李铁栋, 李博生. 基于蛋白质组学对螺旋藻砷胁迫响应机制的研究[J]. 生物技术通报, 2020, 36(4): 107-116. |
[12] | 李堃, 刘悦, 黄鹏, 杨智昉, 胡茜, 张颖, 李志宏, 吕叶辉, 梁乐. 小鼠精原细胞分化的蛋白质组学研究[J]. 生物技术通报, 2020, 36(3): 168-176. |
[13] | 牟永莹, 王道平, 陈明, 邱丽娟, 潘映红. 大豆种子蛋白质组样品制备与数据分析方法[J]. 生物技术通报, 2020, 36(12): 247-255. |
[14] | 张良, 陈小青, 宋佳宇, 毛然然, 姜倩雯, 林向民. 巴洛沙星胁迫下大肠杆菌的比较蛋白质组学研究[J]. 生物技术通报, 2019, 35(3): 103-109. |
[15] | 张环纬, 陈彪, 温心怡, 张杰, 王小东, 李继伟, 许自成, 黄五星. 外源硅对干旱胁迫下烟草幼苗生长、叶片光合及生理指标的影响[J]. 生物技术通报, 2019, 35(1): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||