生物技术通报 ›› 2019, Vol. 35 ›› Issue (10): 189-197.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0860
姜焕焕1, 2, 王通1, 陈娜1, 禹山林1, 迟晓元1, 王冕1, 祁佩时2, 3
收稿日期:
2018-10-07
出版日期:
2019-10-26
发布日期:
2019-09-30
作者简介:
姜焕焕,女,博士,研究方向:土壤环境微生物;E-mail:jhh0317@163.com
基金资助:
JIANG Huan-huan1, 2, WANG Tong1, CHEN Na1, YU Shan-lin1, CHI Xiao-yuan1, WANG Mian1, QI Pei-shi2, 3
Received:
2018-10-07
Published:
2019-10-26
Online:
2019-09-30
摘要: 土壤盐碱化已成为限制作物生长及产量的主要因素之一,严重制约农业的发展。提高作物的抗盐碱性,为提高我国农业持续高效发展奠定基础。从根际促生菌研究现状入手,介绍耐盐碱根际促生菌(Plant growth-promoting rhizobacteria,PGPR)的多样性。综述根际促生菌诱导植物建立抵抗或忍耐盐碱胁迫的机制,主要是通过产生植物激素、1-氨基-环丙烷-1-羧酸(ACC)脱氨酶、抗氧化防御物质、渗透调节物质、胞外多糖及挥发性化合物等生理活性物质,改变植物生理及物质代谢水平;另外,一些PGPR通过调节植物盐碱抗性相关基因及蛋白的表达,增强植物抗盐碱能力。通过对耐盐碱根际促生菌及其与植物互作进行展望,为大规模利用根际促生菌缓解盐碱土壤中植物的盐胁迫损伤、增加产量提供重要参考。
姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2019, 35(10): 189-197.
JIANG Huan-huan, WANG Tong, CHEN Na, YU Shan-lin, CHI Xiao-yuan, WANG Mian, QI Pei-shi. Research Progress in PGPR Improving Plant's Resistance to Salt and Alkali[J]. Biotechnology Bulletin, 2019, 35(10): 189-197.
[1] Godfray HC, Beddington JR, Crute IR, et al.Food security:the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967):812. [2] 井大炜, 马海林, 刘方春, 等. 盐胁迫环境下接种根际促生细菌对白蜡树根际生物学特征及其生长的影响[J]. 水土保持通报, 2018, 38(1):76-81. [3] Vimal SR, Singh JS, Arora NK, et al.Soil-plant-microbe interactions in stressed agriculture management:A review[J]. Pedosphere, 2017, 27(2):177-192. [4] 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展[J]. 生态学杂志, 2016, 35(3):815-824. [5] Burr TJ, Scroth MN, Suslow T.Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas-fluororescens and Pseudomonas-putida[J]. Phytopathology, 1978, 68(9):1377-1383. [6] Gray EJ, Smith DL.Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology and Biochemistry, 2005, 37(3):395-412. [7] Prashar P, Kapoor N, Sachdeva S.Rhizosphere:its structure, bacterial diversity and significance[J]. Reviews in Environmental Science & Biotechnology, 2014, 13(1):63-77. [8] Beneduzi A, Ambrosini A, Passaglia LM.Plant growth-promoting rhizobacteria(PGPR):Their potential as antagonists and biocontrol agents[J]. Genetics & Molecular Biology, 2012, 35(4):1044-1051. [9] Marulanda A, Azcón R, Chaumont F, et al.Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize(Zea mays L.)plants under unstressed and salt-stressed conditions[J]. Planta, 2010, 232(2):533-543. [10] Forni C, Duca D, Glick BR.Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria[J]. Plant & Soil, 2017, 410(1/2):335-356. [11] Giongo A, Ambrosini A, Vargas LK, et al.Evaluation of genetic diversity of Bradyrhizobia strains nodulating soybean[Glycine max(L.)Merrill]isolated from South Brazilian fields[J]. Applied Soil Ecology, 2008, 38(3):261-269. [12] Upadhyay SK, Singh DP, Saikia R.Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition[J]. Current Microbiology, 2009, 59(5):489. [13] Etesami H, Beattie GA.Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions[M]//Probiotics and plant health. Springer Singapore:Springer Nature Singapore Pte Ltd, 2017. [14] Ruppel S, Franken P, Witzel K.Properties of the halophyte microbiome and their implications for plant salt tolerance[J]. Functional Plant Biology, 2013, 40(8/9):3113-3116. [15] Patel S, Naik JH, Amaresan N.Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli(Capsicum annuum)seedling under salt stress[J]. Biocatalysis & Agricultural Biotechnology, 2017, 12:85-89. [16] Zhu F, Qu L, Hong X, et al.Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China[J]. Evid Based Complement Alternat Med, 2011. doi:org/10. 1155/2011/615032. [17] Etesami H, Beattie GA.Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops[J]. Frontiers in Microbiology, 2018, 9:148. [18] Boukhatem ZF, Domergue O, Bekki A, et al.Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria[J]. FEMS Microbiology Ecology, 2012, 80(3):534-547. [19] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60. [20] Dodd IC, Pérezalfocea F.Microbial amelioration of crop salinity stress[J]. J Exp Bot, 2012, 63(9):3415-3428. [21] Boiero L, Perrig D, Masciarelli O, et al.Phytohormone production by three strains of Bradyrhizobium japonicum possible physiological and technological implications[J]. Applied Microbiology & Biotechnology, 2007, 74(4):874-880. [22] Kuklinsky S, Araujo WL, Mendes R, et al.Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology, 2004, 6(12):1244-1251. [23] Li H, Lei P, Pang X, et al.Enhanced tolerance to salt stress in canola(Brassica napus L.)seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4[J]. Appl Soil Ecol, 2017, 119:26-34. [24] Krome K, Rosenberg K, Dickler C, et al.Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants[J]. Plant & Soil, 2010, 328(1/2):191-201. [25] 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285-5297. [26] Patten CL, Glick BR.Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Appl Environ Microbiol, 2002, 68(8):3795-3801. [27] 王宝山, 邹琦. 质膜转运蛋白及其与植物耐盐性关系研究进展[J]. 植物学报, 2000, 17(1):17-26. [28] Dodd IC.Hormonal interactions and stomatal responses[J]. Journal of Plant Growth Regulation, 2003, 22(1):32-46. [29] Zhou C, Li F, Xie Y, et al.Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants[J]. Plant Signal Behav, 2017, 12(10):e1367465. [30] Zhou C, Zhu L, Xie Y, et al.Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation[J]. Front Plant Sci, 2017, 8:143. [31] Thakur M, Sharma AD.Salt-stress-induced proline accumulation in germinating embryos:Evidence suggesting a role of proline in seed germination[J]. Journal of Arid Environments, 2005, 62(3):517-523. [32] Jiang F, Chen L, Belimov AA, et al.Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum Sativum[J]. J Exp Bot, 2012, 63(18):6421-6430. [33] Belimov AA, Dodd IC, Safronova VI, et al.Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth[J]. Plant Physiology & Biochemistry, 2014, 74:84-91. [34] Radhakrishnan R, Khan AL, Kang SM, et al.A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides, RK01 and Humicola, sp. KNU01 under salt stress[J]. Annals of Microbiology, 2015, 65(1):585-593. [35] Khan AL, Hamayun M, Ahmad N, et al.Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L.[J]. J Microbiol Biotechnol, 2011, 21(9):893-902. [36] Porcel R, Aroca R.Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants[J]. BMC Plant Biology, 2014, 14(1):36. [37] Lee KE, Radhakrishnan R, Kang SM, et al.Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion[J]. Journal of Microbiology Biotechnology, 2015, 25(9):1467-1475. [38] Siddiqui MH, Khan MN, Mohammad F, et al.Role of nitrogen and gibberellin(GA3)in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress[J]. J Agronomy Crop Sci, 2008, 194(3):214-224. [39] O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic stress responses[J]. Front Plant Sci, 2013, 4(1):451. [40] 刘方春, 马海林, 杜振宇, 等. 金银花容器苗对干旱胁迫下接种根际促生细菌的生理响应[J]. 生态学报, 2015, 35(21):7003-7010. [41] Saleem M, Arshad M, Hussain S, et al.Perspective of plant growth promoting rhizobacteria(PGPR)containing ACC deaminase in stress agriculture[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(10):635. [42] Elena S, Saleh S, Bernardr G.Growth of transgenic canola(Brassica napus cv. Westar)expressing a bacterial1-aminocyclopropane-1-carboxylate(ACC)deaminase gene on high concentrations of salt[J]. World J Microbiol Biotechnol, 2006, 22(3):277-282. [43] Soh BY, Lee GW, Go EB, et al.1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas fluorescens promoting the growth of Chinese cabbage and its polyclonal antibody[J]. Journal of Microbiology Biotechnology, 2014, 24(5):690-695. [44] Ali S, Charles TC, Glick BR.Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase[J]. Plant Physiology & Biochemistry, 2014, 80:160-167. [45] Wang W, Wu Z, He Y, et al.Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang[J]. Ecotoxicology & Environmental Safety, 2018, 164:520. [46] 许芳芳, 袁立敏, 邵玉芳, 等. 肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应[J]. 微生物学通报, 2018, 45(1):102-110. [47] Cheng Z, Park E, Glick BR.1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt[J]. Canadian Journal of Microbiology, 2007, 53(7):912-918. [48] Saravanakumar D, Samiyappan R.ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut(Arachis hypogea)plants[J]. Journal of Applied Microbiology, 2010, 102(5):1283-1292. [49] Li Z, Chang S, Ye S, et al. Differentiation of 1-aminocyclopropane-1-carboxylate(ACC)deaminase from its homologs is the key for identifying bacteria containing ACC deaminase[J]. FEMS Microbiology Ecology, 2015, 91(10):fiv112. [50] Rasool S, Ahmad A, Siddiqi TO, et al.Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress[J]. Acta Physiologiae Plantarum, 2013, 35(4):1039-1050. [51] Meloni DA, Oliva MA, Martinez CA, et al.Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental & Experimental Botany, 2003, 49(49):69-76. [52] Abdelkrim S, Jebara SH, Jebara, M, et al.Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria[J]. Ecotoxicology and Environment Safety, 2018, 166:427-436. [53] 郑娜, 柯林峰, 杨景艳, 等. 来源于污染土壤的植物根际促生细菌对番茄幼苗的促生与盐耐受机制[J]. 应用与环境生物学报, 2018, 24(1):47-52. [54] Sukweenadhi J, Kim YJ, Choi ES, et al.Paenibacillus yonginensis DCY84(T)induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress[J]. Microbiological Research, 2015, 172:7-15. [55] Latef A, Hamed AA, He CX.Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?[J]. Journal of Plant Growth Regulation, 2014, 33(3):644-653. [56] Egamberdieva D, Li L, Lindström K, et al.A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice(Glycyrrhiza uralensis Fish. )under salt stress[J]. Applied Microbiology & Biotechnology, 2016, 100(6):2829-2841. [57] De Lacerda CF, Cambraia J, Oliva MA, et al.Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress[J]. Environmental and Experimental Botany, 2003, 49:107-112. [58] 吴志勇, 李由然, 顾正华, 等. 枯草芽孢杆菌L-脯氨酸合成途径中glnA、proB、proA基因功能探究[J]. 微生物学报, 2018 (1):39-50. [59] Chen M, Wei H, Cao J, et al.Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis[J]. Journal of Biochemistry & Molecular Biology, 2007, 40(3):396-403. [60] Yasin NA, Akram W, Khan WU, et al.Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.[J]. Environmental Science & Pollution Research, 2018, 25(25):23236-23250. [61] Zhang LH, Zhao YM.Effect of different kinds of growth-promoting rhizobacteria on physiological and biochemical characteristics of Medicago sative Linn. seedlings under the stress of Na2CO3[J]. Agricultural Science & Technology, 2010, 11(6):18045-18047. [62] Niu SQ, Li HR, Paré PW, et al.Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant Soil, 2016, 407(1/2):1-14. [63] Qurashi AW, Sabri AN.Osmolyte accumulation inmoderately halophilic bacteria improves salt tolerance of chickpea[J]. Pak J Bot, 2013, 45:1011-1016. [64] Ashraf M, Hasnain S, Berge O, et al.Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils, 2004, 40(3):157-162. [65] Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al.Effect of inoculation with plant growth-promoting bacteria(PGPB)on amelioration of saline stress in maize(Zea mays)[J]. Applied Soil Ecology, 2012, 61(5):264-272. [66] 上官王丽. 产胞外多糖细菌多样性及其对土壤团聚体形成作用的研究[D]. 南京:南京农业大学, 2013. [67] Bailly A, Weisskopf L.The modulating effect of bacterial volatiles on plant growth[J]. Plant Signal Behav, 2012, 7(7):79-85. [68] Zhang H, Kim MS, Yan S, et al.Soil Bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Mol Plant Microbe Interact, 2008, 21(6):737-744. [69] Vaishnav A, Kumari S, Jain S, et al.Putative bacterial volatile-mediated growth in soybean(Glycine max L. Merrill)and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology, 2015, 119(2):539-551. [70] Bhattacharyya D, Yu SM, Yong HL.Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J]. Plant Growth Regulation, 2015, 75(1):297-306. [71] Lata C, Prasad M.Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14):4731-4748. [72] Barnawal D, Bharti N, Pandey SS, et al.Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiology Plant, 2017, 161(4):502-514. [73] Banaei-Asl F, Bandehagh A, Uliaei ED, et al.Proteomic analysis of canola root inoculated with bacteria under salt stress[J]. Journal of Proteomics, 2015, 124:88-111. [74] Gond SK, Torres MS, Bergen MS, et al.Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans[J]. Letters in Applied Microbiology, 2015, 60(4):392-399. |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[3] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[4] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[5] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[8] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[9] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[10] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[11] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[12] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[13] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[14] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[15] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||