生物技术通报 ›› 2019, Vol. 35 ›› Issue (7): 162-171.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1012
乔孟欣, 李素贞, 陈景堂
收稿日期:
2018-11-23
出版日期:
2019-07-26
发布日期:
2019-07-29
作者简介:
乔孟欣,女,硕士研究生,研究方向:作物遗传育种;E-mail:qiaomx628@sohu.com
基金资助:
QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang
Received:
2018-11-23
Published:
2019-07-26
Online:
2019-07-29
摘要: 铁(Fe)是植物生长必需的微量元素,适宜的铁含量有利于植物的正常生长和发育。在吸收铁这一生理过程中,禾本科植物和非禾本科植物吸收铁的价态不同,并且铁在植物体内的运输过程也存在着二价与三价铁的相互转化。铁还原酶基因(Fe3+ chelate reductase,FRO)具有将三价铁还原成二价铁的功能。因此,在分子水平上研究FRO的具体功能具有非常重要的意义。综述了拟南芥、番茄、大豆、水稻、花生及蒺藜苜蓿等FRO基因在亚细胞定位、还原对象、诱导条件及调控或影响因素等方面的研究进展,以期为后续研究铁的吸收机制奠定理论基础。
乔孟欣, 李素贞, 陈景堂. 植物铁还原酶基因FRO的研究进展[J]. 生物技术通报, 2019, 35(7): 162-171.
QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang. Research Progress of Fe3+ Reductase Genes(FRO)in Plants[J]. Biotechnology Bulletin, 2019, 35(7): 162-171.
[1] Hanke GT, Kimata-Ariga Y, Taniguchi I, et al.A post genomic characterization of Arabidopsis ferredoxins[J]. Plant Physiology, 2004, 134(1):255-264. [2] Halliwell B, Gutteridge JM.Biologically relevant metal ion-dependent hydroxyl radical generation. An update[J]. Febs Letters, 1992, 307(1):108-112. [3] Guerinot ML, Ying Yi.Iron:Nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3):815-820. [4] Eide D, Broderius M, Fett J, et al.A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc Natl Acad Sci USA, 1996, 93(11):5624-5628. [5] Robinson NJ, Procter CM, Connolly EL, et al.A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697. [6] Schagerlof U, Wilson G, Hebert H, et al.Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana[J]. Plant Mol Biol, 2006, 62(1/2):215-221. [7] Connolly EL, Campbell NH, Grotz N, er al. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control[J]. Plant Physiology, 2003, 133(3):1102-1110. [8] Vasconcelos MW, Clemente TE, Grusak MA.Evaluation of constitutive iron reductase(AtFRO2)expression on mineral accumulation and distribution in soybean(Glycine max L.)[J]. Front Plant Sci, 2014, 5:112. [9] Einset J, Winge P, Bones AM, et al.The FRO2 ferric reductase is required for glycine betaine’s effect on chilling tolerance in Arabidopsis roots[J]. Physiologia Plantarum, 2008, 134(2):334-341. [10] Wu H, Li LH, Du J, et al.Molecular and biochemical characterization of the Fe(III)chelate reductase gene family in Arabidopsis thaliana[J]. Plant Cell Physiol, 2005, 46(9):1505-1514. [11] Sivitz A, Grinvalds C, Barberon M, et al.Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses[J]. Plant J, 2011, 66(6):1044-1052. [12] Mai HJ, Pateyron S, Bauer P.Iron homeostasis in Arabidopsis thaliana:transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks[J]. BMC Plant Biology, 2016, 16(1):211. [13] Colangelo EP, Guerinot ML.The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. The Plant Cell, 2004, 16(12):3400-3412. [14] Brumbarova T, Bauer P, Ivanov R.Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends Plant Sci, 2015, 20(2):124-133. [15] Garcia MJ, Suarez V, Romera FJ, et al.A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants[J]. Plant Physiol Biochem, 2011, 49(5):537-544. [16] Lucena C, Romera FJ, Garcia MJ, et al.Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Front Plant Sci, 2015, 6:1056. [17] Wild M, Davière JM, Regnault T, et al.Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses[J]. Developmental Cell, 2016, 37(2):190-200. [18] Garcia MJ, Garcia-Mateo MJ, Lucena, C, et al.Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum, 2014, 150(1):95-106. [19] Shanmugam V, Wang YW, Tsednee M, et al.Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis[J]. Plant J, 2015, 84(3):464-477. [20] Satbhai SB, Setzer C, Freynschlag F, et al.Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency[J]. Nature Communications, 2017, 8:15603. [21] Bernal M, Casero D, Singh V, et al.Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis[J]. The Plant Cell, 2012, 24(2):738-761. [22] Yamasaki H, Hayashi M, Fukazawa M, et al.SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(1):347-361. [23] Gielen H, Remans T, Vangronsveld J, et al.Toxicity responses of Cu and Cd:the involvement of miRNAs and the transcription factor SPL7[J]. BMC Plant Biology, 2016, 16(1):145. [24] Rellan-Alvarez R, Giner-Martínez-Sierra J, Orduna J, et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron:new insights into plant iron long-distance transport[J]. Plant Cell Physiol, 2010, 51(1):91-102. [25] Gayomba SR, Zhai Z, Jung HI, et al.Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements[J]. Front Plant Sci, 2015, 6:716. [26] Mukherjee I, Campbell NH, Ash JS, et al.Expression profiling of the Arabidopsis ferric chelate reductase(FRO)gene family reveals differential regulation by iron and copper[J]. Planta, 2006, 223(6):1178-1190. [27] Lopez-Millan AF, Duy D, Philippar K.Chloroplast iron transport proteins - function and impact on plant physiology[J]. Front Plant Sci, 2016, 7:178. [28] Feng HZ, An FY, Zhang SZ, et al.Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6[J]. Plant Physiology, 2006, 140(4):1345-1354. [29] Jeong J, Cohu C, Kerkeb L, et al.Chloroplast Fe(III)chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proc Natl Acad Sci USA, 2008, 105(30):10619-10624. [30] Jain A, Wilson GT, Connolly EL.The diverse roles of FRO family metalloreductases in iron and copper homeostasis[J]. Front Plant Sci, 2014, 5:100. [31] Li LY, Cai QY, Yu DS, et al.Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis[J]. Mol Biol Rep, 2011, 38(6):3605-3613. [32] Jain A, Connolly EL.Mitochondrial iron transport and homeostasis in plants[J]. Front Plant Sci, 2013, 4:348. [33] Jeong J, Connolly EL.Iron uptake mechanisms in plants:Functions of the FRO family of ferric reductases[J]. Plant Science, 2009, 176(6):709-714. [34] Long TA, Tsukagoshi H, Busch W, et al.The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. The Plant Cell, 2010, 22(7):2219-2236. [35] Ling HQ, Bauer P, Bereczky Z, et al.The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proc Natl Acad Sci USA, 2002, 99(21):13938-13943. [36] Du J, Huang ZA, Wang B, et al.SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany, 2015, 116(1):23-34. [37] Li LH, Cheng XD, Ling HQ.Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004, 54(1):125-136. [38] Zamboni A, Zanin L, Tomasi N, et al.Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent[J]. BMC Genomics, 2016, 17:35. [39] Zamboni A, Zanin L, Tomasi N, et al.Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency[J]. BMC Genomics, 2012, 13:101. [40] Paolacci AR, Celletti S, Catarcione G, et al.Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato(Solanum lycopersicum L.)seedlings[J]. Journal of Integrative Plant Biology, 2014, 56(1):88-100. [41] Kong DY, Chen CL, Wu HL, et al.Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato[J]. Journal of Genetics and Genomics, 2013, 40(11):565-573. [42] Prasad PVV.NUTRITION _ Iron Chlorosis[M]. Encyclopedia of Applied Plant Sciences, 2003:649-656. [43] Santos CS, Roriz M, Carvalho SM, et al.Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants(Glycine max L.)[J]. Front Plant Sci, 2015, 6:325. [44] Qiu W, Dai J, Wang NQ, et al.Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean[J]. Plant Physiol Biochem, 2017, 112:1-8. [45] Ishimaru Y, Suzuki M, Tsukamoto T, et al.Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant J, 2006, 45(3):335-346. [46] Finatto T, de Oliveira AC, Chaparro C, et al. Abiotic stress and genome dynamics:specific genes and transposable elements response to iron excess in rice[J]. Rice, 2015, 8:13. [47] Pereira MP, Santos C, Gomes A, et al.Cultivar variability of iron uptake mechanisms in rice(Oryza sativa L.)[J]. Plant Physiol and Biochemistry, 2014, 85:21-30. [48] Li Q, Yang A, Zhang WH.Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.)[J]. Journal of Experimental Botany, 2016, 67(22):6431-6444. [49] Kobayashi T, Nakanishi IR, Nishizawa NK.Iron deficiency responses in rice roots[J]. Rice, 2014, 7(1):27. [50] Cheng LJ, Wang F, Shou HX, et al.Mutation in nicotianamine aminotransferase stimulated the Fe(II)acquisition system and led to iron accumulation in rice[J]. Plant Physiology, 2007, 145(4):1647-1657. [51] Ricachenevsky FK, Sperotto RA.There and back again, or always there? The evolution of rice combined strategy for Fe uptake[J]. Front Plant Sci, 2014, 5:189. [52] Sun HW, Feng F, Liu J, et al.The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice[J]. Front Plant Sci, 2017, 8:2169. [53] Santos RS, Araujo AT, Pegoraro C, et al.Dealing with iron metabolism in rice:from breeding for stress tolerance to biofortification[J]. Genetics and Molecular Biology, 2017, 40(1):312-325. [54] Ishimaru Y, Kim S, Tsukamoto T, et al.Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J]. Proc Natl Acad Sci USA, 2007, 104(18):7373-7378. [55] Masuda H, Shimochi E, Hamada T, et al.A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil[J]. PLoS One, 2017, 12(3):e0173441. [56] Ding H, Duan LH, Wu HL, et al.Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009, 136(3):274-283. [57] Ding H, Duan LH, Li J, et al.Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize[J]. Journal of Plant Physiology, 2010, 167(12):996-1002. [58] Xiong H, Shen H, Zhang L, et al.Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping[J]. Journal of Proteomics, 2013, 78:447-460. [59] Guo XT, Xiong HC, Shen HY, et al.Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize:role in improving iron nutrition in peanut[J]. Plant Physiol Biochem, 2014, 76:36-43. [60] Andaluz S, Rodriguez-Celma J, Abadia A, et al.Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency[J]. Plant Physiol Biochem, 2009, 47(11/12):1082-1088. [61] Del C orozco-Mosqueda M, Santoyo G, Farías-Rodríguez R, et al. Identification and expression analysis of multiple FRO gene copies in Medicago truncatula[J]. Genetics and Molecular Research, 2012, 11(4):4402-4410. [62] Toledo-Ortiz G.The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8):1749-1770. [63] Yuan Y, Wu HL, Wang N, et al.FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research, 2008, 18(3):385-397. [64] Wang N, Cui Y, Liu Y, et al.Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana[J]. Molecular Plant, 2013, 6(2):503-513. [65] Zhang J, Liu B, Li MS, et al.The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. Plant Cell, 2015, 27(3):787-805. [66] Li SZ, Zhou XJ, Li HB, et al.Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e0136647. [67] Li SZ, Zhou XJ, Huang YQ, et al.Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein(ZIP)gene family in maize[J]. BMC Plant Biology, 2013, 13(1):114. [68] Zanin L, Venuti S, Zamboni A, et al.Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions[J]. BMC Genomics, 2017, 18(1):154. [69] Li SZ, Zhou XJ, Chen JT, et al.Is there a strategy I iron uptake mechanism in maize?[J]. Plant Signal Behavior, 2018, 13(4):e1161877. |
[1] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[2] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
[3] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[4] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[5] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[6] | 高雪彦, 陈林旭, 陈显轲, 庞昕, 潘登, 林建群. 嗜酸硫杆菌在工农业中的应用[J]. 生物技术通报, 2022, 38(5): 36-46. |
[7] | 邹雪峰, 李铭刚, 包玲风, 陈齐斌, 赵江源, 汪林, 濮永瑜, 郝大程, 张庆, 杨佩文. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138. |
[8] | 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2): 150-157. |
[9] | 尹卓然, 轩栋栋, 李晨依, 李长, 柴哲, 王锟瑶, 赵孟琦, 彭靖媛, 董杰, 贾宏昉. 烟草NtNRAMP3b的克隆及功能分析[J]. 生物技术通报, 2022, 38(12): 175-183. |
[10] | 高启禹, 徐光翠, 崔彩霞, 张文博. 微生物铁蛋白的研究进展[J]. 生物技术通报, 2022, 38(1): 269-277. |
[11] | 张伟业, 宋浩志, 刘兴健, 李轶女, 张志芳. 铁蛋白与口蹄疫病毒VP1在大肠杆菌中融合表达及纳米颗粒自组装[J]. 生物技术通报, 2021, 37(2): 96-102. |
[12] | 张丽珊, 孙莉娜, 林镇平, 林向民. 嗜水气单胞菌非核糖体肽合成酶基因功能研究[J]. 生物技术通报, 2020, 36(4): 93-99. |
[13] | 乔孟欣, 李素贞, 陈景堂. 玉米铁还原酶基因ZmFRO2的功能分析[J]. 生物技术通报, 2020, 36(11): 9-20. |
[14] | 刘倩倩, 史宏伟, 郭长禄, 张治洲. 海鞘附着相关微生物膜中细菌原核群落结构解析[J]. 生物技术通报, 2020, 36(11): 76-84. |
[15] | 徐敬昭, 陈贝, 杜秉海, 赵东英, 汪城墙, 丁延芹. 一株嗜麦芽寡养单胞菌的分离及其生物学特性[J]. 生物技术通报, 2019, 35(3): 71-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||