生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 253-260.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0619
左玲莉1,2(), 周丽婷1, 吴兴旗1, 吴超逸1, 吴淑燕1()
收稿日期:
2020-05-22
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
左玲莉,女,硕士研究生,研究方向:细菌感染与免疫;E-mail: 基金资助:
ZUO Ling-li1,2(), ZHOU Li-ting1, WU Xing-qi1, WU Chao-yi1, WU Shu-yan1()
Received:
2020-05-22
Published:
2021-02-26
Online:
2021-02-26
摘要:
利用λRed重组系统和pBAD原核表达载体构建鼠伤寒沙门菌spvBC质粒毒力基因修饰菌株,为深入探究沙门菌毒力基因spv的功能和致病机制及宿主抗感染免疫提供工具菌。以pKD4为模板,PCR扩增含spvBC同源臂的卡那霉素抗性基因以构建同源打靶片段,再将其电转入含有质粒pKD46的鼠伤寒沙门菌中进行同源重组,随后将质粒pCP20电转导入阳性转化子,消除卡那霉素抗性基因,PCR鉴定敲除株的构建。PCR扩增含酶切位点的spvBC基因片段,扩增产物与原核表达载体pBAD/gⅢ分别双酶切后连接构建pBAD-spvBC重组质粒,PCR筛选阳性菌落并测序鉴定。将构建成功的pBAD-spvBC重组质粒电转导入spvBC敲除株中,Western blot测定不同浓度L-阿拉伯糖诱导SpvB和SpvC蛋白表达情况。PCR结果表明鼠伤寒沙门菌spvBC基因敲除成功;PCR及测序结果表明pBAD-spvBC重组质粒构建成功,Western blot结果表明13 mmol/L L-阿拉伯糖可诱导SpvB和SpvC蛋白正常表达。λRed重组系统可用于沙门菌质粒上大片段基因的敲除,pBAD原核表达载体可用于沙门菌质粒上大片段基因的回补,丰富了细菌质粒的基因修饰和编辑策略。
左玲莉, 周丽婷, 吴兴旗, 吴超逸, 吴淑燕. 鼠伤寒沙门菌spvBC基因编辑株的构建[J]. 生物技术通报, 2021, 37(2): 253-260.
ZUO Ling-li, ZHOU Li-ting, WU Xing-qi, WU Chao-yi, WU Shu-yan. Construction of spvBC Gene Editing Strains of Salmonella typhimurium[J]. Biotechnology Bulletin, 2021, 37(2): 253-260.
Primer name | Primer sequence(5'-3') |
---|---|
H1P1 | CAGAAAATATACCTGGCCATCGTCAG ACGGCCAGTTTCAGGAGATAGTGTGT GTAGGCTGGAGCTGCTTC |
H2P2 | AAATAGCTGTTTAACGGCGTTTACTG TTCCGTTGCTCCCCAAACCCATACAT GGGAATTAGCCATGGTCC |
P3 | ACTTTTGAACAGGCCGTAGAGC |
P4 | TGCGGACATATCAATATGCATGAG |
spvBC-F(Xho I) | CCTCGAGTTGATACTAAATGGTTTTTC |
spvBC-R(EcoR I) | GGAATTCCCTCTGTCATCAAACGATAAA |
表1 实验所用引物序列
Primer name | Primer sequence(5'-3') |
---|---|
H1P1 | CAGAAAATATACCTGGCCATCGTCAG ACGGCCAGTTTCAGGAGATAGTGTGT GTAGGCTGGAGCTGCTTC |
H2P2 | AAATAGCTGTTTAACGGCGTTTACTG TTCCGTTGCTCCCCAAACCCATACAT GGGAATTAGCCATGGTCC |
P3 | ACTTTTGAACAGGCCGTAGAGC |
P4 | TGCGGACATATCAATATGCATGAG |
spvBC-F(Xho I) | CCTCGAGTTGATACTAAATGGTTTTTC |
spvBC-R(EcoR I) | GGAATTCCCTCTGTCATCAAACGATAAA |
图1 spvBC基因编辑株的构建 A:PCR扩增含spvBC同源臂的kan抗性片段。M:DNA marker;1-4:pKD4 线性片段;B:PCR鉴定重组菌SL1344-ΔspvBC∷kan及敲除株SL1344-ΔspvBC。M:DNA marker;1:SL1344-ΔspvBC∷kan;2:SL1344-ΔspvBC;3:阴性对照;C:PCR扩增spvBC片段。M:DNA marker;1-5:spvA、spvB、spvC、spvD及spvBC扩增片段;D:重组表达质粒pBAD-spvBC的鉴定。M:DNA marker;1-16:疑似携带重组表达质粒pBAD-spvBC的菌落;17:阴性对照
图2 spvBC回补株蛋白的诱导表达 A:SpvB抗体检测回补株SL1344-c-spvBC中蛋白SpvB的诱导表达。M:蛋白marker;1:SL1344-ΔspvBC:2:SL1344-c-spvBC;3:1.3 mmol/L L-阿拉伯糖诱导SL1344-c-spvBC;4:13 mmol/L L-阿拉伯糖诱导SL1344-c-spvBC;5:13 mmol/L L-阿拉伯糖诱导SL1344-c-spvB;B:抗His标签抗体鉴定回补株SL1344-c-spvBC中蛋白SpvC的诱导表达。M:蛋白marker;1:SL1344-WT;2:SL1344-ΔspvBC;3:SL1344-c-spvBC;4:1.3 mmol/L L-阿拉伯糖诱导SL1344-c-spvBC;5:13 mmol/L L-阿拉伯糖诱导SL1344-c-spvBC
[1] |
Miller EA, Elnekave E, Flores-Figueroa C, et al. Emergence of a novel Salmonella enterica serotype reading clonal group is linked to its expansion in commercial turkey production, resulting in unanticipated human illness in north America[J]. mSphere, 2020,5(2):e00056-20.
doi: 10.1128/mSphere.00056-20 URL pmid: 32295868 |
[2] |
Ao TT, Feasey NA, Gordon MA, et al. Global burden of invasive nontyphoidal Salmonella disease, 2010(1)[J]. Emerging Infectious Diseases, 2015,21(6):941-949.
doi: 10.3201/eid2106.140999 URL |
[3] |
Keestra-Gounder AM, Tsolis RM, Baumler AJ. Now you see me, now you don’t:the interaction of Salmonella with innate immune receptors[J]. Nat Rev Microbiol, 2015,13(4):206-216.
doi: 10.1038/nrmicro3428 URL |
[4] | 李艳, 张晓蕾, 李金平, 等. 2013-2017年感染性腹泻的病原体特点和流行特征[J]. 中华医院感染学杂志, 2019,29(11):1732-1736. |
Li Y, Zhang XL, Li JP, et al. Etiological and epidemiological characteristics of with infections diarrhea in a hospital from 2013 to 2017[J]. Chinese Journal of Nosocomiology, 2019,29(11):1732-1736. | |
[5] |
Lopes GV, Pissetti C, da Cruz Payao Pellegrini D, et al. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, and carcasses in Brazil[J]. Journal of Food Protection, 2015,78(2):407-413.
doi: 10.4315/0362-028X.JFP-14-274 URL pmid: 25710159 |
[6] |
Karki R, Lee E, et al. IRF8 regulates transcription of Naips for NLR-C4 inflammasome activation[J]. Cell, 2018,173(4):920-933.
URL pmid: 29576451 |
[7] |
Laughlin RC, Knodler LA, et al. Spatial segregation of virulence gene expression during acute enteric infection with Salmonella ent-erica serovar Typhimurium[J]. mBio, 2014,5(1):e00946-13.
doi: 10.1128/mBio.00946-13 URL pmid: 24496791 |
[8] |
Passaris I, Cambre A, Govers SK, et al. Bimodal expression of the Salmonella Typhimurium spv operon[J]. Genetics, 2018,210(2):621-635.
URL pmid: 30143595 |
[9] |
Tezcan-Merdol D, Nyman T, Lindberg U, et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB[J]. Molecular Microbiology, 2001,39(3):606-619.
doi: 10.1046/j.1365-2958.2001.02258.x URL pmid: 11169102 |
[10] |
Tezcan-Merdol D, Engstrand L, Rhen M. Salmonella enterica SpvB-mediated ADP-ribosylation as an activator for host cell actin degradation[J]. Int J Med Microbiol, 2005,295(4):201-212.
doi: 10.1016/j.ijmm.2005.04.008 URL pmid: 16128395 |
[11] |
Miao EA, Brittnacher M, Haraga A, et al. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton[J]. Mol Microbiol, 2003,48(2):401-415.
doi: 10.1046/j.1365-2958.2003.t01-1-03456.x URL pmid: 12675800 |
[12] |
Chu Y, Gao S, Wang T, et al. A novel contribution of spvB to pathogenesis of Salmonella Typhimurium by inhibiting autophagy in host cells[J]. Oncotarget, 2016,7(7):8295-8309.
doi: 10.18632/oncotarget.6989 URL pmid: 26811498 |
[13] |
Mazurkiewicz P, Thomas J, Thompson JA, et al. SpvC is a Salmo-nella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases[J]. Mol Microbiol, 2008,67(6):1371-1383.
URL pmid: 18284579 |
[14] |
Haneda T, Ishii Y, Shimizu H, et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection[J]. Cellular Microbiology, 2012,14(4):485-499.
doi: 10.1111/j.1462-5822.2011.01733.x URL pmid: 22188134 |
[15] |
Hou M, Sun S, et al. Genetic editing of the virulence gene of Escherichia coli using the CRISPR system[J]. PeerJ, 2020,8:e8881.
doi: 10.7717/peerj.8881 URL pmid: 32292652 |
[16] |
Dillingham MS, Kowalczykowski SC. RecBCD enzyme and the repair of double-stranded DNA breaks[J]. Microbiology and molecular biology reviews:MMBR, 2008,72(4):642-671.
doi: 10.1128/MMBR.00020-08 URL pmid: 19052323 |
[17] |
Munoz-Jimenez C, Ayuso C, et al. An efficient FLP-based toolkit for spatiotemporal control of gene expression in Caenorhabditis elegans[J]. Genetics, 2017,206(4):1763-1778.
URL pmid: 28646043 |
[18] | 南亚萍, 周国标, 袁林江. 多聚磷酸盐激酶基因在污水生物除磷中的功能[J]. 环境科学, 2017,38(4):1529-1535. |
Nan YP, Zhou GB, Yuan LJ. Function of polyphosphate kinase gene in biological phosphate removal during the wastewater treatment process[J]. Environmental Science, 2017,38(4):1529-1535.
doi: 10.1021/es034450d URL |
|
[19] |
Copeland NG, Jenkins NA, Court DL. Recombineering:a powerful new tool for mouse functional genomics[J]. Nature Reviews Genetics, 2001,2(10):769-779.
doi: 10.1038/35093556 URL pmid: 11584293 |
[20] |
Szeliova D, Krahulec J, Safranek M, et al. Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains[J]. Journal of Biotechnology, 2016,236:1-9.
doi: 10.1016/j.jbiotec.2016.08.004 URL pmid: 27498315 |
[21] | 邵哲旭, 李芊, 边春象, 等. 大肠杆菌TOP10F’中重组质粒pBAD/gⅢA-NTF2稳定性考察[J]. 绵阳师范学院学报, 2010,29(2):79-83. |
Shao ZX, Li QQ, Bian CX, et al. Study on the stablity of recombinant plasmid pBAD/ gⅢA-NTF2 in Escherichia coli TOP 10F' strain[J]. Journal of Mianyang Normal University, 2010,29(2):79-83. | |
[22] | 武有聪, 孟媛媛, 丁百兴, 等. 以质粒为基础的同源重组技术在葡萄球菌基因敲除中的应用[J]. 中国人兽共患病学报, 2019,35(7):581-586. |
Wu YC, Meng YY, Ding BX, et al. Application of plasmid-based allelic replacement in the gene deletion of Staphylococcus[J]. Chinese Journal of Zoonoses, 2019,35(7):581-586. | |
[23] |
Liao SW, Lee JJ, Ptak CP, et al. Effects of L-arabinose efflux on lambda Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis[J]. Arch Microbiol, 2018,200(2):219-225.
doi: 10.1007/s00203-017-1436-4 URL pmid: 28975374 |
[24] | Murphy KC. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli[J]. Journal of Bacteriology, 1998,180(8):2063-2071. |
[25] |
Doublet B, Douard G, Targant H, et al. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains[J]. Journal of Microbiological Methods, 2008,75(2):359-361.
doi: 10.1016/j.mimet.2008.06.010 URL pmid: 18619499 |
[26] | 高嵩, 燕婧, 储元元, 等. λRed重组系统用于沙门菌质粒毒力基因spvC敲除株的构建[J]. 生物技术, 2016,26(4):367-371. |
Gao S, Yan J, Chu YY, et al. Construction of Salmonella mutant with spvC gene knockout by λRed recombination system[J]. Biotechnology, 2016,26(4):367-371. | |
[27] | 付喜爱, 张德显, 周维, 等. 细菌λ Red重组技术的应用及其影响因素[J]. 动物医学进展, 2015,36(1):91-95. |
Fu XA, Zhang DX, Zhou W, et al. Application of λRed recombination in bacteria and analysis of influencing factors[J]. Progress in Veterinary Medicine, 2015,36(1):91-95. | |
[28] |
Yu D, Ellis HM, Lee EC, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. PNAS, 2000,97(11):5978-5983.
doi: 10.1073/pnas.100127597 URL pmid: 10811905 |
[29] | 王仁霞, 刘荣娇, 李子微, 等. 两步PCR介导的Red重组技术快速敲除鼠疫耶尔森菌sRNA及染色体大片段[J]. 微生物学报, 2017,57(7):1126-1137. |
Wang RX, Liu RJ, Li ZW, et al. Two-step PCR mediated Red recombination technique for rapid deletion of Yersinia pestis sRNA and large fragment chromosome[J]. Acta Microbiologica Sinica, 2017,57(7):1126-1137. | |
[30] | Peng Z, Wei X, Lin Z. Stable surface expression of a gene for Helicobacter pylori toxic porin protein with pBAD expression system[J]. Journal of Huazhong University of Science and Technology Medical Sciences, 2009,29(4):435-438. |
[31] | 司微, 刘慧芳, 等. 利用Red重组系统敲除大肠杆菌菌株ClpP基因方法的研究[J]. 黑龙江畜牧兽医, 2011, ( 15):28-30. |
Si W, Liu HF, et al. The research on the deletion of ClpP gene in chromosome of E. coli by Red recombination system[J]. Heilong-jiang Animal Science and Veterinary Medicine, 2011, ( 15):28-30. | |
[32] |
Schulte LN, Schweinlin M, Westermann AJ, et al. An advanced human intestinal coculture model reveals compartmentalized host and pathogen strategies during Salmonella infection[J]. mBio, 2020,11(1):e03348-19.
doi: 10.1128/mBio.03348-19 URL pmid: 32071273 |
[33] |
Yang SD, Deng QF, Sun LQ, et al. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2[J]. FASEB J, 2019,33(12):13450-13464.
doi: 10.1096/fj.201900883RR URL pmid: 31569998 |
[34] |
Gopinath A, Allen TA, Bridgwater CJ, et al. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream[J]. PLoS One, 2019,14(12):e0226126.
doi: 10.1371/journal.pone.0226126 URL pmid: 31815949 |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[3] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[4] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[5] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[6] | 赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12. |
[7] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
[8] | 陈映丹, 张扬, 夏嫱, 孙虹霞. CRISPR/Cas基因编辑技术及其在微藻研究中的应用[J]. 生物技术通报, 2022, 38(5): 257-268. |
[9] | 胡秀文, 刘华, 王宇, 唐雪明, 王金斌, 曾海娟, 蒋玮, 李红. CRISPR-Cas系统在核酸检测中的应用研究[J]. 生物技术通报, 2021, 37(9): 266-273. |
[10] | 黄耀辉, 焦悦, 付仲文. 日本转基因作物安全管理制度概况及进展[J]. 生物技术通报, 2021, 37(3): 99-106. |
[11] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
[12] | 刘佳, 魏佳奇, 刘玉琴, 时歌歌, 郭静. 基于专利分析和社会网络分析的基因编辑技术演化研究[J]. 生物技术通报, 2021, 37(12): 274-284. |
[13] | 岳鹏鹏, 郭俊璠, 于鸿浩, 付灿, 王小燕, 高进涛. 基于CRISPR/cas9系统高效编辑小鼠Galt基因[J]. 生物技术通报, 2020, 36(8): 235-342. |
[14] | 高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 2020, 36(5): 22-31. |
[15] | 程英, 靳明辉, 萧玉涛. 鳞翅目昆虫基因编辑技术研究进展[J]. 生物技术通报, 2020, 36(3): 18-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||