生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 10-17.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0861
收稿日期:
2020-07-13
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
孙小倩,女,硕士研究生,研究方向:荞麦分子生物学;E-mail:基金资助:
SUN Xiao-qian(), WANG Jia-rui, CHEN Qing-fu, LI Hong-you()
Received:
2020-07-13
Published:
2021-03-26
Online:
2021-04-02
摘要:
R2R3-MYB转录因子SG7亚家族成员在植物黄酮醇生物合成中具有极其重要的调控作用。探究苦荞中SG7 R2R3-MYB转录因子在黄酮醇生物合成中的功能,为苦荞黄酮醇生物合成的分子调控机制研究奠定基础。采用RT-PCR技术从苦荞中克隆到一个前期经转录组与代谢组联合分析鉴定到的SG7 R2R3-MYB转录因子,命名为FtMYBF。利用生物信息学、亚细胞定位、基因共表达、基因表达量与总黄酮含量相关性对该基因进行了分析。结果表明,FtMYBF全长CDS序列为1 119 bp,编码372个氨基酸。蛋白多序列比对和系统进化树分析表明,FtMYBF属于R2R3-MYB SG7亚家族成员。亚细胞定位显示,FtMYBF蛋白定位于细胞核。基因共表达分析表明,FtMYBF与多个苦荞黄酮醇生物合成结构基因共表达。基因表达量与总黄酮含量间相关性分析表明,FtMYBF在不同组织部位表达量与总黄酮含量高度正相关。FtMYBF属于R2R3-MYB SG7亚家族成员,是一个核定位转录因子,其可能通过正调控苦荞黄酮醇生物合成结构基因的表达来正调控苦荞黄酮和黄酮醇的生物合成。
孙小倩, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子FtMYBF的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2021, 37(3): 10-17.
SUN Xiao-qian, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Gene Cloning,Subcellular Localization and Expression Analyses of FtMYBF Transcription Factor in Fagopyrum tataricum[J]. Biotechnology Bulletin, 2021, 37(3): 10-17.
引物名称 | 引物序列(5'-3') |
---|---|
FtMYBF-f1 | ATGGGAAGAGCACCTTGCTG |
FtMYBF-r1 | CTCAAGAAAGAAGCCAGGCAAC |
FtMYBF-f2 | CAAGCTTGCATGCCTGCAGGTCGACATGGGAA- GAGCACCTTGCTG |
FtMYBF-r2 | CCTCGCCCTTGCTCACCATGGATCCAGAAAGA- AGCCAGGCAACCA |
FtMYBF-qf | GGGAGAGAGTAGCTGCAATG |
FtMYBF-qr | CCCACATTAGCCACGATAGG |
FtActin7-f | ATGTTCACTACCACCGCTGA |
FtActin7-r | TGAACCTCTCAGCACCAATC |
表1 本研究所用引物序列
引物名称 | 引物序列(5'-3') |
---|---|
FtMYBF-f1 | ATGGGAAGAGCACCTTGCTG |
FtMYBF-r1 | CTCAAGAAAGAAGCCAGGCAAC |
FtMYBF-f2 | CAAGCTTGCATGCCTGCAGGTCGACATGGGAA- GAGCACCTTGCTG |
FtMYBF-r2 | CCTCGCCCTTGCTCACCATGGATCCAGAAAGA- AGCCAGGCAACCA |
FtMYBF-qf | GGGAGAGAGTAGCTGCAATG |
FtMYBF-qr | CCCACATTAGCCACGATAGG |
FtActin7-f | ATGTTCACTACCACCGCTGA |
FtActin7-r | TGAACCTCTCAGCACCAATC |
图6 FtMYBF在苦荞不同组织部位中的表达量与总黄酮含量间的相关性 A:FtMYBF在不同组织部位中的表达;B:黑苦013不同组织部位的总黄酮含量;C:FtMYBF在不同组织部位表达量与总黄酮含量间的相关性。叶1:成年植株顶端1叶;叶2:成年植株顶端3叶;种1:灌浆前种子;种2:灌浆期种子;种3:乳熟期种子
[1] |
Zhang LJ, Li XX, Ma B, et al. The tartary buckwheat genome provides insights into rutin biosynjournal and abiotic stress tolerance[J] . Molecular Plant, 2017,10(9):1224-1237.
doi: 10.1016/j.molp.2017.08.013 URL pmid: 28866080 |
[2] |
Zhu F. Chemical composition and health effects of tartary buckwheat[J] . Food Chemistry, 2016,203:231-245.
doi: 10.1016/j.foodchem.2016.02.050 URL pmid: 26948610 |
[3] |
Li J, Yang P, Yang Q, et al. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS[J] . Molecules, 2019,24(7):1310.
doi: 10.3390/molecules24071310 URL |
[4] |
Li H, Lv Q, Ma C, et al. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynjournal in the developing seed of tartary buckwheat(Fagopyrum tataricum)[J] . Journal of Agricultural and Food Chemistry, 2019,67(40):11262-11276.
doi: 10.1021/acs.jafc.9b03135 URL pmid: 31509416 |
[5] |
Nabavi SM, Šamec D, Tomczyk M, et al. Flavonoid biosynthetic pathways in plants:versatile targets for metabolic engineering[J] . Biotechnology Advances, 2020,38:107316.
doi: 10.1016/j.biotechadv.2018.11.005 URL pmid: 30458225 |
[6] | Afrin S, Nuruzzaman M, Zhu J, et al. Combinatorial interactions of MYB and bHLH in flavonoid biosynjournal and their function in plants[J] . Journal of Plant Biology Research, 2014,3(2):65-77. |
[7] |
Li S. Transcriptional control of flavonoid biosynjournal:fine-tuning of the MYB-bHLH-WD40(MBW)complex[J] . Plant Signaling & Behavior, 2014,9(1):e27522.
URL pmid: 24393776 |
[8] |
Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom[J] . Current Opinion in Plant Biology, 2020,55:100-108.
URL pmid: 32422532 |
[9] | 邢文, 金晓玲. 调控植物类黄酮生物合成的MYB转录因子研究进展[J] . 分子植物育种, 2015,13(3):689-696. |
Xing W, Jin XL. Recent advances of MYB transcription factors involved in the regulation of flavonoid biosynjournal[J] . Molecular Plant Breeding, 2015,13(3):689-696. | |
[10] | 温东, 师玉华, 赵锐, 等. 苦荞MYB家族转录因子研究进展[J] . 中国实验方剂学杂志, 2019,25(6):227-234. |
Wen D, Shi YH, Zhao R, et al. MYB transcription factors in Fagopyrum tataricum[J] . Chinese Journal of Experimental Traditional Medical Formulae, 2019,25(6):227-234. | |
[11] |
Bai YC, Li CL, Zhang JW, et al. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynjournal[J] . Physiologia Plantarum, 2014,152(3):431-440.
doi: 10.1111/ppl.12199 URL |
[12] |
Luo XP, Zhao HX, Yao PF, et al. An R2R3-MYB transcription factor FtMYB15 involved in the synjournal of anthocyanin and proanthocyanidins from tartary buckwheat[J] . Journal of Plant Growth Regulation, 2018,37(1):76-84.
doi: 10.1007/s00344-017-9709-3 URL |
[13] | 余艳, 廖小龙, 肖玉华, 等. 苦荞转录因子FtMYB56基因的克隆及其对黄酮合成的调控[J/OL] . 基因组学与应用生物学. http//kns.cnki.net/kcms/detail/45.1369.q,20191023.1519.004.html. |
Yu Y, Liao XH, Xiao YH, et al. Transcription factors FtMYB56 cloned from Fagopyrum tataricum, its effects on flavonoid biosynthesis[J/OL] . Genomics and Applied Biology. http//kns.cnki.net/kcms/detail/45.1369.q,20191023.1519.004.html. | |
[14] |
Zhang D, Jiang CL, Huang CH, et al. The light-induced transcription factor FtMYB116 promotes accumulation of rutin in Fagopyrum tataricum[J] . Plant Cell and Environment, 2019,42(4):1340-1351.
doi: 10.1111/pce.v42.4 URL |
[15] |
Sun ZX, Linghu B, Hou SY, et al. Tartary buckwheat FtMYB31 gene encoding an R2R3-MYB transcription factor enhances flavonoid accumulation in tobacco[J] . Journal of Plant Growth Regulation, 2020,39:564-574.
doi: 10.1007/s00344-019-10000-7 URL |
[16] |
Luo XP, Li SJ, Yao PF, et al. The jasmonate-ZIM domain protein FtJAZ2 interacts with the R2R3-MYB transcription factor FtMYB3 to affect anthocyanin biosynjournal in tartary buckwheat[J] . Turkish Journal of Biology, 2017,41:526-534.
doi: 10.3906/biy-1610-6 URL |
[17] |
Huang YJ, Wu Q, Wang S, et al. FtMYB8 from Tartary buckwheat inhibits both anthocyanin/proanthocyanidin accumulation and marginal trichome initiation[J] . BMC Plant Biology, 2019,19:263.
doi: 10.1186/s12870-019-1876-x URL pmid: 31215400 |
[18] |
Zhou ML, Sun ZM, Ding MQ, et al. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum[J] . New Phytologist, 2017,216(3):814-828.
doi: 10.1111/nph.2017.216.issue-3 URL |
[19] |
Zhang KX, Logacheva MD, Meng Y, et al. Jasmonate-responsive MYB factors spatially repress rutin biosynjournal in Fagopyrum tataricum[J] . Journal of Experimental Botany, 2018,69(8):1955-1966.
doi: 10.1093/jxb/ery032 URL pmid: 29394372 |
[20] |
Li JB, Zhang KX, Meng Y, et al. FtMYB16 interacts with Ftimportin-α1 to regulate rutin biosynjournal in tartary buckwheat[J] . Plant Biotechnology Journal, 2019,17:1479-1481.
doi: 10.1111/pbi.13121 URL pmid: 30963665 |
[21] | 伍小方, 高国应, 左倩, 等. FtMYB1转录因子调控苦荞毛状根黄酮醇合成的机理研究[J] . 植物遗传资源学报, 2020,21(5):1270-1278. |
Wu XF, Gao GY, Zuo Q, et al. Deciphering the functional basis of FtMYB1 transcription factor in flavonol biosynjournal of tartary buckwheat hairy root[J] . Journal of Plant Genetic Resources, 2020,21(5):1270-1278. | |
[22] |
Yao P, Zhao H, Luo X, et al. Chalcone synthase homologous genes cloning and expression pattern in flowering Fagopyrum tataricum Gaertn[J] . Russian Journal of Plant Physiology, 2016,63:790-799.
doi: 10.1134/S1021443716060169 URL |
[23] | 王璐瑗, 荣玉萍, 黄娟, 等. 211份金荞麦收集系根茎黄酮含量的分析评价[J] . 贵州师范大学学报:自然科学版, 2019,37(4):25-30, 48. |
Wang LY, Rong YP, Huang J, et al. Analysis and evaluation of the flavonoid content of rhizomes of 211 different Golden buckwheat accessions(Fagopyrum cymosum complex)[J] . Journal of Guizhou Normal University:Natural Sciences, 2019,37(4):25-30, 48. | |
[24] |
Huang W, Sun W, Lv H, et al. Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum[J] . International Journal of Molecular Sciences, 2012,14(1):594-610.
doi: 10.3390/ijms14010594 URL pmid: 23271373 |
[25] |
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J] . Current Opinion in Plant Biology, 2001,4(5):447-456.
doi: 10.1016/S1369-5266(00)00199-0 URL |
[26] |
Czemmel S, Stracke R, Weisshaar B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synjournal in developing grape berries[J] . Plant Physiology, 2009,151(3):1513-1530.
doi: 10.1104/pp.109.142059 pmid: 19741049 |
[27] |
Matsui K, Oshima Y, Mitsuda N, et al. Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynjournal[J] . Plant Science, 2018,274:466-475.
doi: 10.1016/j.plantsci.2018.06.025 URL pmid: 30080636 |
[28] |
Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynjournal[J] . Plant Physiology, 2005,138(2):1083-1096.
doi: 10.1104/pp.104.058032 URL pmid: 15923334 |
[29] | Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J] . The Plant Journal, 2007,509(4):660-677. |
[30] |
Wang N, Xu H, Jiang S, et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synjournal in red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J] . The Plant Journal, 2017,90(2):276-292.
URL pmid: 28107780 |
[31] |
Zhai R, Zhao Y, Wu M, et al. The MYB transcription factor PbMYB12b positively regulates flavonol biosynjournal in pear fruit[J] . BMC Plant Biology, 2019,19(1):85.
doi: 10.1186/s12870-019-1687-0 pmid: 30791875 |
[32] |
Liu C, Long J, Zhu K, et al. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynjournal[J] . Scientific Reports, 2016,6:25352.
doi: 10.1038/srep25352 URL pmid: 27162196 |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[5] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[6] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[7] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[8] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[9] | 郑敏敏, 柳洁, 赵清. 药用植物黄芩的生物学研究进展及展望[J]. 生物技术通报, 2023, 39(2): 10-23. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 侯瑞泽, 鲍悦, 陈启亮, 毛桂玲, 韦博霖, 侯雷平, 李梅兰. 普通白菜PRR5的克隆、表达及功能验证[J]. 生物技术通报, 2023, 39(10): 128-135. |
[12] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[13] | 杨敏, 龙雨青, 曾娟, 曾梅, 周新茹, 王玲, 付学森, 周日宝, 刘湘丹. 灰毡毛忍冬UGTPg17、UGTPg36基因克隆及功能研究[J]. 生物技术通报, 2023, 39(10): 256-267. |
[14] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[15] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||