生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 14-24.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0627
收稿日期:
2021-05-13
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
韩少杰,男,博士,特聘研究员,研究方向:植物对线虫抗性机制;E-mail: 基金资助:
Received:
2021-05-13
Published:
2021-07-26
Online:
2021-08-13
摘要:
大豆在我国国民经济中扮演着重要角色,目前我国是全球最大的大豆消费国、进口国,且进口大豆数量逐年递增。大豆孢囊线虫病是威胁全球主要大豆产地的重要病害,每年全球范围内造成超过数十亿美元经济损失,防控形势严峻。抗性品种的种植是防控大豆孢囊线虫病最经济有效的措施。然而,单一抗性品种的过度使用及大豆孢囊线虫生理小种不断演化,导致抗性降低,威胁大豆产业安全。随着生物技术的发展,大豆孢囊线虫抗性机制研究不断深入,在遗传学、转录组学、蛋白功能等相关方面的研究取得了长足进展。本文综述了已知的大豆主要抗性位点(Rhg1和Rhg4)的抗性机制及囊泡运输、植物激素通路与大豆孢囊线虫抗性产生的关系,讨论了相关功能蛋白对大豆抗性的意义以及研究方向上可能存在的问题,最后展望了该领域的后续研究。相关的研究将有利于充分发掘大豆优良抗性基因,为抗大豆孢囊线虫转基因大豆新种质创制奠定理论基础,服务于我国大豆产业的长久安全发展。
韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24.
HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines[J]. Biotechnology Bulletin, 2021, 37(7): 14-24.
图1 已知SCN相关QTLs在大豆基因组图谱中的分布示意图 SCN抗性相关QTLs在大豆20条染色体中(Chr.1-Chr.20)中的相对位置、相对长度由红色线段表示。通过GWAS发现的QTLs标注在左侧,通过分离群体研究所发现的QTLs标注于右侧。相关信息整理自SoyBase(https://www.soybase.org)
Fig. 1 Distribution diagram of known SCN-related QTLs in soybean genetic map The relative positions and relative lengths of SCN-related QTLs in the 20 chromosomes of soybean(Chr.1-Chr.20)are indicated by the red line segment. QTLs by GWAS are labeled on the left,and QTLs by separated population are labeled on the right. Relevant data are colleted from SoyBase(https://www.soybase.org)
[1] |
Niblack TL, Lambert KN, Tylka GL. A model plant pathogen from the kingdom Animalia:Heterodera glycines, the soybean cyst nematode[J]. Annu Rev Phytopathol, 2006, 44(1):283-303.
doi: 10.1146/annurev.phyto.43.040204.140218 URL |
[2] | 许艳丽, 王丽芳, 战丽莉. 大豆胞囊线虫病研究进展(续一)[J]. 大豆科技, 2010(1):21-24. |
Xu YL, Wang LF, Zhan LL. The research advances on soybean cyst nematodes(SCN)[J]. Soybean Sci Technol, 2010(1):21-24. | |
[3] |
Bandara AY, Weerasooriya DK, Bradley CA, et al. Dissecting the economic impact of soybean diseases in the United States over two decades[J]. PLoS One, 2020, 15(4):e0231141.
doi: 10.1371/journal.pone.0231141 URL |
[4] | Wang D, Duan YX, Wang YY, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi provinces, China[J]. Plant Dis, 2015, 99(6):893. |
[5] | 宋美静, 朱晓峰, 王东, 等. 我国大豆主产区大豆胞囊线虫群体分布及致病性分化研究[J]. 大豆科学, 2016, 35(4):630-636. |
Song MJ, Zhu XF, Wang D, et al. Population distribution and pathogenicity differentiation of soybean cyst nematode in main soybean production areas of China[J]. Soybean Sci, 2016, 35(4):630-636. | |
[6] | Li YH, Qi XT, Chang RZ, et al. Evaluation and utilization of soybean germplasm for resistance to cyst nematode in China[M]// Sudarić A. Soybean-Molecular aspects of breeding. Croatia:Poljoprivreda, 2011. |
[7] |
Jung C, Wyss U. New approaches to control plant parasitic nematodes[J]. Appl Microbiol Biotechnol, 1999, 51(4):439-446.
doi: 10.1007/s002530051414 URL |
[8] | 孔祥超, 李红梅, 耿甜, 等. 大豆种质资源对大豆孢囊线虫3号和4号生理小种的抗性鉴定[J]. 植物保护, 2012, 38(1):146-150. |
Kong XC, Li HM, Geng T, et al. Resistance evaluation of soybean varieties and germplasms to the races No. 3 and No. 4 of soybean cyst nematode Heterodera glycines[J]. Plant Prot, 2012, 38(1):146-150. | |
[9] | 刘世名, 彭德良. 大豆的孢囊线虫抗性研究新进展[J]. 中国科学:生命科学, 2016, 46(5):535-547. |
Liu SM, Peng DL. Recent progresses on soybean resistance to soybean cyst nematode[J]. Sci Sin:Vitae, 2016, 46(5):535-547.
doi: 10.1360/N052016-00162 URL |
|
[10] | 石红利. 大豆孢囊线虫的生物学特性及诱导抗性研究[D]. 杭州:浙江大学, 2013. |
Shi HL. Biological characteristics and induced resistance to Heterodera glycines[D]. Hangzhou:Zhejiang University, 2013. | |
[11] | Hua C, Li CJ, Hu YF, et al. Identification of HG types of soybean cyst nematode Heterodera glycines and resistance screening on soybean genotypes in northeast China[J]. J Nematol, 2018, 50(1):41-50. |
[12] |
Chen JS, Zhou YY, Wang YY, et al. Characterization of virulence phenotypes of Heterodera glycines in Heilongjiang, northeast China[J]. Plant Dis, 2021. https://doi.org/10.1094/PDIS-04-20-0820-SR.
doi: https://doi.org/10.1094/PDIS-04-20-0820-SR |
[13] |
Chowdhury IA, Yan GP, Plaisance A, et al. Characterization of virulence phenotypes of soybean cyst nematode(Heterodera glycines)populations in north Dakota[J]. Phytopathology, 2021. DOI: 10.1094/phyto-01-21-0031-r.
doi: 10.1094/phyto-01-21-0031-r |
[14] |
Meinhardt C, Howland A, Ellersieck M, et al. Resistance gene pyramiding and rotation to combat widespread soybean cyst nematode virulence[J]. Plant Dis, 2021. https://doi.org/10.1094/PDIS-12-20-2556-RE.
doi: https://doi.org/10.1094/PDIS-12-20-2556-RE |
[15] |
Melito S, Heuberger AL, Cook D, et al. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode resistance[J]. BMC Plant Biol, 2010, 10:104.
doi: 10.1186/1471-2229-10-104 pmid: 20529370 |
[16] |
Liu X, Liu S, Jamai A, et al. Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene[J]. Funct Integr Genomics, 2011, 11(4):539-549.
doi: 10.1007/s10142-011-0225-4 URL |
[17] | Ithal N, Recknor J, Nettleton D, et al. Developmental transcript profiling of cyst nematode feeding cells in soybean roots[J]. Mol Plant Microbe Interactions®, 2007, 20(5):510-525. |
[18] |
Klink VP, Overall CC, Alkharouf NW, et al. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max(soybean)to Heterodera glycines(soybean cyst nematode)infection[J]. Planta, 2007, 226(6):1423-1447.
doi: 10.1007/s00425-007-0581-4 URL |
[19] |
Klink VP, Overall CC, Alkharouf NW, et al. Laser capture microdissection(LCM)and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean(Glycine max)roots infected by the soybean cyst nematode(Heterodera glycines)[J]. Planta, 2007, 226(6):1389-1409.
doi: 10.1007/s00425-007-0578-z URL |
[20] |
Kandoth PK, Ithal N, Recknor J, et al. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells[J]. Plant Physiol, 2011, 155(4):1960-1975.
doi: 10.1104/pp.110.167536 URL |
[21] |
Matsye PD, Kumar R, Hosseini P, et al. Mapping cell fate decisions that occur during soybean defense responses[J]. Plant Mol Biol, 2011, 77(4/5):513-528.
doi: 10.1007/s11103-011-9828-3 URL |
[22] |
Tian B, Wang S, Todd TC, et al. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing[J]. BMC Genomics, 2017, 18(1):572.
doi: 10.1186/s12864-017-3963-4 pmid: 28768484 |
[23] |
Jiang HP, Tian LZ, Bu FS, et al. RNA-seq-based identification of potential resistance genes against the soybean cyst nematode(Heterodera glycines)HG Type 1. 2. 3. 5. 7 in ‘Dongnong L-10’[J]. Physiol Mol Plant Pathol, 2021, 114:101627.
doi: 10.1016/j.pmpp.2021.101627 URL |
[24] |
Ge FY, Zheng N, Zhang LP, et al. Chemical mutagenesis and soybean mutants potential for identification of novel genes conferring resistance to soybean cyst nematode[J]. J Integr Agric, 2018, 17(12):2734-2744.
doi: 10.1016/S2095-3119(18)62105-7 URL |
[25] |
Liu S, Ge F, Huang W, et al. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants[J]. Theor Appl Genet, 2019, 132(9):2677-2687.
doi: 10.1007/s00122-019-03381-6 URL |
[26] | Tylka G, Mullaney M. Soybean cyst nematode-resistant soybeans for Iowa. extension publication pm 1649[M]. Iowa state university extension, Ames, 2017. |
[27] |
Cook DE, Lee TG, Guo X, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111):1206-1209.
doi: 10.1126/science.1228746 URL |
[28] |
Cook DE, Bayless AM, Wang K, et al. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode[J]. Plant Physiol, 2014, 165(2):630-647.
doi: 10.1104/pp.114.235952 URL |
[29] | Liu Y, Du H, Li P, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182(1):162-176. e13. |
[30] |
Butler KJ, Chen SY, Smith JM, et al. Soybean resistance locus Rhg1 confers resistance to multiple cyst nematodes in diverse plant species[J]. Phytopathology, 2019, 109(12):2107-2115.
doi: 10.1094/PHYTO-07-19-0225-R URL |
[31] |
Bayless AM, Smith JM, Song JQ, et al. Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1[J]. PNAS, 2016, 113(47):E7375-E7382.
doi: 10.1073/pnas.1610150113 URL |
[32] |
Liu SM, Kandoth PK, Lakhssassi N, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J]. Nat Commun, 2017, 8:14822.
doi: 10.1038/ncomms14822 URL |
[33] |
Bayless AM, Zapotocny RW, Grunwald DJ, et al. An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans[J]. PNAS, 2018, 115(19):E4512-E4521.
doi: 10.1073/pnas.1717070115 URL |
[34] | Bayless AM, Zapotocny RW, Han S, et al. The rhg1-a(Rhg1 low-copy)nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene[J]. Plant Direct, 2019, 3(8):e00164. |
[35] |
Lee TG, Kumar I, Diers BW, et al. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus[J]. Mol Ecol, 2015, 24(8):1774-1791.
doi: 10.1111/mec.2015.24.issue-8 URL |
[36] |
Li YH, Shi XH, Li HH, et al. Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping[J]. Plant Genome, 2016, 9(2). DOI: 10. 3835/plantgenome2015. 04. 0020.
doi: 10. 3835/plantgenome2015. 04. 0020 |
[37] |
Lakhssassi N, Liu S, Bekal S, et al. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen[J]. Sci Rep, 2017, 7:45226.
doi: 10.1038/srep45226 pmid: 28338077 |
[38] |
Guo W, Zhang F, Bao AL, et al. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode[J]. Mol Plant Pathol, 2019, 20(2):270-286.
doi: 10.1111/mpp.2019.20.issue-2 URL |
[39] |
Han SJ, Smith JM, Du YL, et al. The soybean Rhg1 amino acid transporter protein becomes abundant along the SCN penetration path and impacts ROS generation[J]. bioRxiv, 2020, DOI: 10. 1101/2020. 09. 01. 277814.
doi: 10. 1101/2020. 09. 01. 277814 |
[40] |
Chen X, Li S, Zhao XB, et al. Modulation of(Homo)glutathione metabolism and H2O2 accumulation during soybean cyst nematode infections in susceptible and resistant soybean cultivars[J]. Int J Mol Sci, 2020, 21(2):388.
doi: 10.3390/ijms21020388 URL |
[41] |
Matson A L, Williams L F. Evidence of a fourt gene for resistance to the soybean cyst nematodde 1[J]. Crop Science, 1965, 5(5):477.
doi: 10.2135/cropsci1965.0011183X000500050032x URL |
[42] |
Webb DM, Baltazar BM, Rao-Arelli AP, et al. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437. 654[J]. Theor Appl Genet, 1995, 91(4):574-581.
doi: 10.1007/BF00223282 pmid: 24169883 |
[43] | Yu N, Lee TG, Rosa DP, et al. Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean[J]. TAG Theor Appl Genet Theor Und Angewandte Genet, 2016, 129(12):2403-2412. |
[44] |
Liu S, Kandoth PK, Warren SD, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428):256-260.
doi: 10.1038/nature11651 URL |
[45] |
Kandoth PK, Liu S, Prenger E, et al. Systematic mutagenesis of serine hydroxymethyltransferase reveals an essential role in nematode resistance[J]. Plant Physiol, 2017, 175(3):1370-1380.
doi: 10.1104/pp.17.00553 pmid: 28912378 |
[46] |
Patil GB, Lakhssassi N, Wan J, et al. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode[J]. Plant Biotechnol J, 2019, 17(8):1595-1611.
doi: 10.1111/pbi.2019.17.issue-8 URL |
[47] |
Lakhssassi N, Piya S, Knizia D, et al. Mutations at the serine hydroxymethyltransferase impact its interaction with a soluble NSF attachment protein and a pathogenesis-related protein in soybean[J]. Vaccines, 2020, 8(3):349.
doi: 10.3390/vaccines8030349 URL |
[48] |
Lakhssassi N, Piya S, Bekal S, et al. A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines[J]. Plant Biotechnol J, 2020, 18(8):1810-1829.
doi: 10.1111/pbi.13343 pmid: 31960590 |
[49] |
Meksem K, Pantazopoulos P, Njiti VN, et al. ’Forrest’ resistance to the soybean cyst nematode is bigenic:saturation mapping of the Rhg1and Rhg4 loci[J]. Theor Appl Genet, 2001, 103(5):710-717.
doi: 10.1007/s001220100597 URL |
[50] |
Hawes CR, Brandizzi F, Andreeva AV. Endomembranes and vesicle trafficking[J]. Curr Opin Plant Biol, 1999, 2(6):454-461.
pmid: 10607657 |
[51] |
Gu Y, Zavaliev R, Dong X. Membrane trafficking in plant immunity[J]. Mol Plant, 2017, 10(8):1026-1034.
doi: 10.1016/j.molp.2017.07.001 URL |
[52] |
McNeece BT, Sharma K, Lawrence GW, et al. The mitogen activated protein kinase(MAPK)gene family functions as a cohort during the Glycine max defense response to Heterodera glycines[J]. Plant Physiol Biochem, 2019, 137:25-41.
doi: 10.1016/j.plaphy.2019.01.018 URL |
[53] |
Klink VP, Sharma K, Pant SR, et al. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense[J]. Plant Signal Behav, 2017, 12(2):e1274481.
doi: 10.1080/15592324.2016.1274481 URL |
[54] |
Sharma K, Niraula PM, Troell HA, et al. Exocyst components promote an incompatible interaction between Glycine max(soybean)and Heterodera glycines(the soybean cyst nematode)[J]. Sci Rep, 2020, 10(1):15003.
doi: 10.1038/s41598-020-72126-z URL |
[55] |
Jahn R, Scheller RH. SNAREs——engines for membrane fusion[J]. Nat Rev Mol Cell Biol, 2006, 7(9):631-643.
doi: 10.1038/nrm2002 URL |
[56] |
Pant SR, Matsye PD, McNeece BT, et al. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines[J]. Plant Mol Biol, 2014, 85(1/2):107-121.
doi: 10.1007/s11103-014-0172-2 URL |
[57] |
Sharma K, Pant SR, McNeece BT, et al. Co-regulation of the Glycine max soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor(SNARE)-containing regulon occurs during defense to a root pathogen[J]. J Plant Interact, 2016, 11(1):74-93.
doi: 10.1080/17429145.2016.1195891 URL |
[58] |
Dong J, Zielinski RE, Hudson ME. T-SNAREs bind the Rhg1 α-SNAP and mediate soybean cyst nematode resistance[J]. Plant J, 2020, 104(2):318-331.
doi: 10.1111/tpj.v104.2 URL |
[59] |
Lawaju BR, Niraula P, Lawrence GW, et al. The Glycine max conserved oligomeric Golgi(COG)complex functions during a defense response to Heterodera glycines[J]. Front Plant Sci, 2020, 11:564495.
doi: 10.3389/fpls.2020.564495 URL |
[60] |
Hu YF, You J, Li CJ, et al. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines[J]. Sci Rep, 2017, 7:41282.
doi: 10.1038/srep41282 URL |
[61] |
Tucker ML, Xue P, Yang R. 1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J]. J Exp Bot, 2010, 61(2):463-472.
doi: 10.1093/jxb/erp317 pmid: 19861652 |
[62] | Mazarei M, Puthoff DP, Hart JK, et al. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection[J]. Mol Plant Microbe Interactions®, 2002, 15(6):577-586. |
[63] |
Mazarei M, Elling AA, Maier TR, et al. GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis[J]. Mol Plant Microbe Interact, 2007, 20(2):107-119.
doi: 10.1094/MPMI-20-2-0107 URL |
[64] |
Hermsmeier D, Mazarei M, Baum TJ. Differential display analysis of the early compatible interaction between soybean and the soybean cyst nematode[J]. Mol Plant Microbe Interactions, 1998, 11(12):1258-1263.
doi: 10.1094/MPMI.1998.11.12.1258 URL |
[65] |
Lin JY, Mazarei M, Zhao N, et al. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode[J]. Plant Biotechnol J, 2013, 11(9):1135-1145.
doi: 10.1111/pbi.12108 URL |
[66] |
Guo XL, Chronis D, de la Torre CM, et al. Enhanced resistance to soybean cyst nematodeHeterodera glycinesin transgenic soybean by silencing putative CLE receptors[J]. Plant Biotechnol J, 2015, 13(6):801-810.
doi: 10.1111/pbi.2015.13.issue-6 URL |
[67] |
Wang J, Dhroso A, Liu X, et al. Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal[J]. New Phytol, 2021, 229(1):563-574.
doi: 10.1111/nph.v229.1 URL |
[68] |
Lee MW, Huffaker A, Crippen D, et al. Plant elicitor peptides promote plant defences against nematodes in soybean[J]. Mol Plant Pathol, 2018, 19(4):858-869.
doi: 10.1111/mpp.2018.19.issue-4 URL |
[69] | Niraula PM, Zhang XF, Jeremic D, et al. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines[J]. PLoS One, 2021, 16(1):e0244305. |
[70] |
Ngaki MN, Sahoo DK, Wang B, et al. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean[J]. Plant Biotechnol J, 2021, 19(3):502-516.
doi: 10.1111/pbi.v19.3 URL |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[5] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[6] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[7] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[8] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[9] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[10] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[11] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[12] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
[13] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[14] | 王惠, 张顺斌, 金贺, 王晗, 张耕华, 夏诗宁, 陈井生, 段玉玺. 4-香豆酸辅酶A连接酶响应大豆孢囊线虫胁迫的潜在功能[J]. 生物技术通报, 2021, 37(7): 71-80. |
[15] | 詹冬梅, 朱晨, 周承哲, 黄雪婷, 赖钟雄, 郭玉琼. 茶树Gro/Tup1基因家族鉴定及外源激素和非生物胁迫下表达分析[J]. 生物技术通报, 2021, 37(12): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||